Исследования K_{e3} распада в эксперименте OKA

О. П. Ющенко⁺¹⁾, В. Ф. Куршецов⁺, А. П. Филин⁺, С. А. Акименко⁺, А. В. Артамонов⁺, А. М. Блик⁺,

В. В. Бреховских⁺, В. С. Буртовой⁺, С. В. Донсков⁺, А. В. Инякин⁺, А. М. Горин⁺, Г. В. Хаустов⁺,

С. А. Холоденко⁺, В. Н. Колосов⁺, А. С. Константинов⁺, В. М. Леонтьев⁺, В. А. Лишин⁺, М. В. Медынский⁺,

Ю. В. Михайлов⁺, В. Ф. Образцов⁺, В. А. Поляков⁺, А. В. Попов⁺, В. И. Романовский⁺, В. И. Рыкалин⁺,

А. С. Садовский⁺, В. Д. Самойленко⁺, В. К. Семенов⁺, О. В. Стенякин⁺, О. Г. Чикилев⁺, В. А. Уваров⁺,

В. А. Дук^{*2)}, С. Н. Филиппов^{*}, Е. Н. Гущин^{*}, Ю. Г. Куденко^{*3)}, А. А. Худяков^{*}, В. И. Кравцов^{*},

А. Ю. Поляруш^{*}, В. Н. Бычков[#], Г. Д. Кекелидзе[#], В. М. Лысан[#], В. Ж. Залиханов[#]

⁺Национальный исследовательский центр "Курчатовский Институт" – ИΦВЭ, 142281 Протвино, Россия

*Институт ядерных исследований РАН, 142190 Троицк, Россия

[#]Объединенный институт ядерных исследований, 141980 Дубна, Россия

Поступила в редакцию 21 ноября 2017 г. После переработки 6 декабря 2017 г.

Представлены новые результаты установки ОКА по изучению формфакторов K_{e3} распада. В анализе использовано более 5.25М событий, отобранных при распаде K^+ -мезонов с импульсом 17.7 ГэВ/с. Получены значения линейного и квадратичного наклонов для формфактора $f_+(t)$: $\lambda_+ = (2.95 \pm 0.022 \pm \pm 0.018) \times 10^{-2}$ для чисто линейного фита и $\lambda'_+ = (2.611 \pm 0.035 \pm 0.028) \times 10^{-2}$, $\lambda''_+ = (1.91 \pm 0.19 \pm 0.14) \times 10^{-3}$ для квадратичного. Скалярные и тензорные вклады сравнимы с нулем. Также определены значения параметров для некоторых альтернативных параметризаций: $M_V = 891 \pm 3$ МэВ – значение для полюсного фита; $\Lambda_+ = (2.458 \pm 0.018) \times 10^{-2}$ – для дисперсионного представления.

DOI: 10.7868/S0370274X18030013

1. Введение. Распады каонов предоставляют уникальную информацию о динамике сильных взаимодействий. Они позволяют тестировать такие теории как алгебра токов, PCAC, киральная теория возмущений (ChPT) и т.д. Другое направление при изучение распадов каонов – это поиск новых взаимодействий, таких как тензорные и скалярные. В данной работе представлены результаты анализа, проведенного на большой статистике K_{e3} распадов, полученных установкой ОКА на протонном синхротроне У-70.

2. Пучок и детектор ОКА. Аббревиатура ОКА происходит от "Опыты над КАонами". Пучок эксперимента ОКА является вторичным ВЧсепарированным пучком протонного синхротрона У-70 (ИФВЭ, Протвино). Описание пучка представлено в [1]. Реализована ВЧ-сепарация со схемой Пановского. Сепаратор состоит из двух сверхпроводящих Карлсруе-ЦЕРН дефлекторов [2], предоставленных ЦЕРНом. Специализированная криогенная система, разработанная в ИФВЭ [3], производит сверхтекучий гелий для охлаждения полостей резонаторов. Сепарированный пучок содержит до ~20 % положительно заряженных каонов с импульсом 17.7 ГэВ/с и интенсивностью ~ 10^6 каонов в 3-х секундном спиле У-70.

Установка ОКА является магнитным спектрометром, схематический вид которого представлен на рис. 1 и включает в себя:

- 1. Пучковый спектрометр, состоящий из 7 пропорциональных камер (ПК) с шагом 1 мм ($BPC_{x,y}$, в общей сложности ~1500 каналов), 4-х сцинтилляционных счетчиков толщиной 2 мм и 2-х пороговых черенковских счетчиков.
- 2. Распадный объем (DV) длиной 11 м, заполненный гелием. Охранная система состоит из 670 сэндвичей свинец-сцинтиллятор: $20 \times (5 \text{ мм} \text{ Sc} + 1.5 \text{ мм} \text{ Pb})$ со съемом информации с помощью спектросмещающих волокон (WLS). Счетчики сгруппированы в 300 каналов амплитудного анализа (ADC).
- 3. Главный магнитный спектрометр: магнит с апертурой 200 $\times 140\,{\rm cm}^2$ и интегралом поля

¹⁾e-mail: Oleg.Yushchenko@ihep.ru

²⁾также University of Birmingham, UK

³⁾также Национальный исследовательский ядерный университет "МИФИ" и Московский физико-технический институт, Москва, Россия

Рис. 2. (Цветной онлайн) (а) – Распределение E/p – отношение энергии кластера в GAMS к импульсу ассоциированного трека. (b) – Угол α между \mathbf{p}_{K} и $\mathbf{p}_{e} + \mathbf{p}_{\pi}$ в лабораторной системе (справа)

 $\int Bdl \sim 1$ Тл м; 8 плоскостей ПК с шагом 2 мм (5000 каналов), 1000 каналов строу-трубок диаметром 9 мм и 300 каналов дрейфовых трубок диаметром 40 мм.

- 4. Гамма-детекторы: GAMS-2000 (~ 2300 блоков свинцового стекла размером $3.8 \times 3.8 \times 45$ см), детектор для больших углов (EGS) (~ 1050 блоков свинцового стекла $5 \times 5 \times 42$ см).
- Мюонный детектор: адронный калориметр (GDA-100) – 100 сэндвичей железосцинтиллятор размером 20 × 20 см; 4 сцинтилляционных счетчика размером 1 × 1 м, расположенные за GDA-100.

3. Триггер и статистика. При наборе данных использовался очень простой, практически "minimum bias" триггер:

$$\mathrm{Tr} = S_1 \cdot S_2 \cdot S_3 \cdot \overline{\check{C}}_1 \cdot \check{C}_2 \cdot \overline{S}_{\mathrm{bk}} \cdot (\Sigma_{\mathrm{GAMS}} > \mathrm{MIP}),$$

представляющий собой комбинацию пучковых сцинтилляционных счетчиков, $\check{C}_{1,2}$ черенковских пороговых счетчиков (\check{C}_1 выделяет пионы, \check{C}_2 – пионы и каоны), $S_{\rm bk}$ – "beam-killer", расположенный в центральном отверстии для пролета пучка GAMS. $\Sigma_{\rm GAMS}$ >

МІР представляет собой требование для аналоговой суммы амплитуд каналов GAMS превышать сигнал МІР. Установка ОКА набирает данные с 2010 г., полная накопленная статистика соответствует $\sim 10 M K_{e3}$ распадам. В данном анализе мы использует часть статистики, набранную в 2012 и 2013 годах.

4. Исследования Ke3 распада. Реконструкция события начинается с реконструкции пучкового трека в $BPC_1 \div BPC_4$, затем происходит поиск вторичных треков в $PC_1 \div PC_8$; $ST_1 \div ST_3$; $DT_1 \div DT_2$ и отбираются события с одним хорошо реконструированным положительно заряженным треком. Также накладываются условия на качество реконструированной вершины распада. Следующий шаг состоит в поиске ливней в калориметрах GAMS-2000 и EGS. Электрон идентифицируется по величине отношения энергии ливня к импульсу ассоциированного трека. На рис. 2 приведено отношение E/p. Частицы, для которых 0.8 < E/p < 1.2, идентифицировались как электроны/позитроны. Для дальнейшего анализа отбирались события с одним положительно заряженным треком, идентифицированным как позитрон и двумя дополнительными ливнями в электромагнитных калориметрах. Массовый спектр $\gamma\gamma$ содержит явный пик на массе π^0 ($M_{\pi 0} = 134.9 \,\mathrm{M}\mathfrak{s}\mathrm{B}$)

Рис. 3. (Цветной онлайн) (a) – Корреляция $\lambda' - \lambda''$. (b) – Проекция диаграммы Далица на ось z. Данные – точки с ошибками, гистограмма – фит, соответствующий первой строке табл. 1

с разрешением ~ 8.5 МэВ. Для подавления основного фона от распада $K_{\pi 2}$ используется угол между направлениями импульса пучкового трека \mathbf{p}_K и системы $e\pi$ ($\mathbf{p}_e + \mathbf{p}_{\pi}$). Распределение для этого угла показано на рис. 2. Вклад фоновых событий ясно виден как острый пик при малых углах. Сигнальные события отбирались при условии $\alpha > 1.6$ мрад. Также требовалось, чтобы 2С кинематический фит $K \to e\nu\pi^0$ сходился для сигнальных событий. В конечном итоге, для анализа были отобраны 5.25М событий. Вклад фоновых событий оценен на основании анализа Монте-Карло и составляет менее 1%.

Анализ. Анализ форм-факторов основан на фите распределения событий на диаграмме Далица в переменных $y = 2E_e^*/M_K$ и $z = 2E_\pi^*/M_K$, где E_e^* , E_π^* – энергии позитрона и π^0 в системе покоя каона. Из анализа Монте-Карло можно установить, что фоновые события сосредоточены на переферии диаграммы Далица. В наиболее общем виде Лоренц-инвариантный матричный элемента для распада $K^+ \to l^+ \nu \pi^0$ может быть представлен как [4]:

$$M = \frac{-G_{\rm F} V_{\rm us}}{2} \bar{u}(p_{\nu})(1+\gamma^5) \times \\ \times \left[((P_K + P_{\pi})_{\alpha} f_+ + (P_K - P_{\pi})_{\alpha} f_-) \gamma^{\alpha} - 2m_K f_S - i \frac{2f_T}{m_K} \sigma_{\alpha\beta} P_K^{\alpha} P_{\pi}^{\beta} \right] v(p_l).$$

Представленное выражение содержит векторный, скалярный и тензорный члены. f_{\pm} являются функциями $t = (P_K - P_{\pi})^2$.

В Стандартной Модели (СМ) диаграмма распада с обменом W-бозоном приводит к чисто векторному вкладу. Часть векторного вклада, пропорциональная f_- , может быть сведена (с помощью уравнений Дирака) к скалярному формфактору, пропорциональному $(m_l/2m_K)f_-$. Этим малым вкладом можно принебречь в случае K_{e3} . Для формфактора $f_+(t)$ могут быть использованы различные параметризации. Первой параметризацией является разложение в ряд Тэйлора: $f_+(t) = f_+(0)(1 + \lambda'_+ t/m_{\pi^+}^2 + \frac{1}{2}\lambda''_+ t^2/m_{\pi^+}^4)$; она обычно используется для сравнения с предсказаниями ChPT. Альтернативной параметризацией является полюсная форма: $f_+(t) = f_+(0)\frac{m_V^2}{m_V^2-t}$. В последнее время используется также относительно новая дисперсионная параметризация [5,6]: $f_+(t) = f_+(0) \exp(\frac{t}{m_{\pi}^2}(\Lambda_+ + H(t)))$. Здесь H(t) – определенная функция.

В процессе фита формфакторов λ_+ , f_S , f_T использовалась процедура, которая подробно описана в [7]. Эта процедура позволяет устранить систематические ошибки, возникающие из-за "миграции" событий на диаграмме Далица из-за конечного экспериментального разрешения. Радиационные поправки из [8] учитывались с помощью введения веса для каждого Монте-Карло события.

Результаты и сравнение с теорией. Фит линейной параметризацией приводит к значению $\lambda_+ =$ $= (2.95 \pm 0.022) \times 10^{-2}$. Этот параметр можно сравнить с очень старым предсказанием ChPT O(p^4) [9]: $\lambda_+^{\text{ChPT}} = (31.0 \pm 0.6) \times 10^{-3}$. Результаты других фитов представлены в табл. 1, на первой строке которой "стандартный" фит с двумя параметрами: линейным и квадратичным наклонами. Вклад квадратичного члена является весьма существенным. Мы также наблюдаем сильную корелляцию между линейным и квадратичным членами (см. рис. 3) на котором проиллюстрировано качество фита.

$\lambda'_{+} (10^{-2})$	m [ГэВ]	$\Lambda_{+} (10^{-2})$	λ_{+}'' (10 ⁻³)	$f_t/f_+(0) \ (10^{-2})$	$f_s/f_+(0) \ (10^{-3})$
$2.611^{+0.035}_{-0.035}$			$1.91^{+0.19}_{-0.18}$		
	$0.891^{+0.003}_{-0.003}$				
		$2.458^{+0.018}_{-0.018}$			
$2.612^{+0.035}_{-0.035}$			$1.90^{+0.19}_{-0.19}$	$-1.24^{+1.6}_{-1.3}$	$0.13^{+3.8}_{-4.6}$
	$0.891^{+0.004}_{-0.006}$			$-1.85^{+2.4}_{-1.2}$	$1.95^{+3.7}_{-7.4}$
		$2.459^{+0.019}_{-0.018}$		$-1.14^{+1.5}_{-1.3}$	$-0.13^{+4.5}_{-3.9}$

Таблица 1. Результаты фита данных с различными представлениями форм-факторов

Вторая и третья строки табл. 1 соответствуют полюсному и дисперсионному фитам соответственно. Следующие строки представляют квадратичный, полюсной и дисперсионный фиты с дополнительными тензорными и скалярными вкладами. Видно, что вклады f_S и f_T сравнимы с нулем.

Основные вклады в систематическую ошибку связаны с вариацией Z-координаты положения вершины распада и величины отбора по углу α . Вклады в систематическую ошибку от вариаций Z и α составляют (0.021, 0.014) $\cdot 10^{-2}$ и (0.11, 0.06) $\cdot 10^{-3}$ для λ'_{+} и λ''_{+} соответственно. Окончательно мы получаем результаты для квадратичного фита: $\lambda'_{+} = (2.611 \pm 0.035 \pm 0.028) \cdot 10^{-2}$ и $\lambda''_{+} = (1.91^{+0.19}_{-0.18} \pm 0.14) \cdot 10^{-3}$. Квадратичный вклад (λ''_{+}) можно сравнить со значением $\sim 2.2 \cdot 10^{-3}$, полученным в вычислениях ChPT O(p^{6}) [10].

Значение для полюсного фита можно сравнить со значением массы K^* [11]: $M_{K*} = 891.66 \pm 0.26$ МэВ. Значения пределов на параметры F_S и F_T могут быть интерпретированы в терминах модели скалярных лепто-кварков (LQ). Соответствующая диаграмма с обменом LQ должна быть добавлена к СМдиаграмме с обменом W-бозоном. Используя тождества Фирца для матричного элемента LQ, можно получить:

$$(\bar{s}\mu)(\bar{\nu}u) = -\frac{1}{2}(\bar{s}u)(\bar{\nu}\mu) - \frac{1}{8}(\bar{s}\sigma_{\alpha\beta}u)(\bar{\nu}\sigma^{\alpha\beta}\mu),$$

где первый член является тензорным, а второй – скалярным. Можно установить соотношение между f_S, f_T и параметром LQ-модели Λ_{LQ} [12]. Полученные ограничения позволяют найти $\Lambda_{LQ} > 3.5$ ТэВ на уровне достоверности 95 %.

Приведенные выше результаты можно сравнить с результатами, полученными на установке ISTRA+ [7], принимая во внимание, что нормировка параметров в нашем анализе и в [7] различна. В данном анализе используется $t/m_{\pi^+}^2$ (вместо $t/m_{\pi^0}^2$ в [7]) и введен фактор 1/2 перед квадратичным членом для воспроизведения разложения в ряд Тэйлора в соответствии с конвенцией PDG (см. [11], с. 994–996). Результаты [7] в конвенции PDG имеют вид [11]: $\lambda_{+} = (2.966 \pm 0.050) \times 10^{-2}$ для чисто линейного фита и $\lambda'_{+} = (2.485 \pm 0.163) \times 10^{-2}$, $\lambda''_{+} = (1.92 \pm 0.62) \times 10^{-3}$ для квадратичного. Можно отметить, что при увеличении статистики в ~6 раз мы имеем очень хорошее согласие текущего и предыдущего анализов. Квадратичный член в параметризации форм-фактора становится более статистически значимым с новыми измерениями, что приводит к существенному уменьшению статистических ошибок в параметрах λ'_{+} и λ''_{+} .

- V. I. Garkusha, F. N. Novoskoltsev, V. N. Zapolsky, and V. G. Zarucheisky. *Preprint* IHEP 2003-4.
- A. Citron, G. Dammertz, M. Grunder, L. Husson, R. Lehm, and H. Lengeler, Nucl. Instr. and Meth. 164, 31 (1979).
- A. Ageev, A. Bakay, L. Kalashnikov, A. Kaltchuk, S. Kozub, M. Muraviev, A. Orlov, A. P. Orlov, V. Solomko, S. Unjakov, A. Khartchenko, L. Shirshov, Ju. Shovkun, and S. Zintchenko, in: Proc. of RuPAC, Zvenigorod, Russia (2008), p. 282.
- H. Steiner, S. Natali, F. Romano et al. (Collaboration), Phys. Lett. B 36, 521 (1971).
- V. Bernard, M. Oertel, E. Passemar, and J. Stern, Phys. Lett. B 638, 480 (2006).
- V. Bernard, M. Oertel, E. Passemar, and J. Stern, Phys. Rev. D 80, 034034 (2009).
- O. P. Yushchenko, S. A. Akimenko, G. I. Britvich et al. (Collaboration), Phys. Lett. B 589, 111 (2004).
- V. Cirigliano, M. Knecht, H. Neufeld, H. Rupertsberger, and P. Talavera, Eur. Phys. J. C 23, 121 (2002).
- J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 517 (1985).
- J. Bijnens and P. Talavera, Nucl. Phys. B 669, 341 (2003).
- C. Patrignani, K. Agashe, G. Aielli et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016).
- V. V. Kiselev, A. K. Likhoded, and V. F. Obraztsov, hep-ph-0204066 (2002).