Влияние процессов азотирования и гидрирования на магнитные свойства и структуру сплава Sm₂Fe₁₇: анализ XMCD данных

А. П. Менушенков⁺¹⁾, А. Г. Савченко^{*}, В. Г. Иванов⁺, А. А. Иванов⁺, И. В. Щетинин^{*}, В. П. Менушенков^{*}, И. А. Руднев⁺, А. В. Рафальский^{*}, Д. Г. Жуков^{*}, М. Платунов[†], Ф. Вилхельм^{† 2)}, А. Рогалев[†]

⁺Национальный исследовательский ядерный университет "МИФИ", 115409 Москва, Россия

*Национальный исследовательский технологической университет "МИСиС", 119049 Москва, Россия

[†]European Synchrotron Radiation Facility (ESRF), CS40220, F-38043 Grenoble Cedex 9, France

Поступила в редакцию 1 декабря 2017 г. После переработки 20 декабря 2017 г.

Представлены результаты исследования изменений локальных магнитных и структурных свойств сплавов Sm_2Fe_{17} при азотировании и гидрировании образцов, полученные методом рентгеновского магнитного кругового дихроизма (XMCD) на *K*-крае поглощения железа и L_3 -крае поглощения самария с использованием синхротронного излучения. Результаты обсуждены на основе данных рентгеноструктурного анализа и макроскопических магнитных измерений, выполненных с использованием вибрационной магнитометрии. Наблюдаемые изменения в XMCD спектрах указывают на заметное влияние процесса азотирования на локальные магнитные свойства подрешеток как железа, так и самария, в то время, как процесс гидрирования образцов приводит к малозаметному эффекту. Указанные эффекты анализируются и обсуждаются с точки зрения влияния междоузельных атомов азота (N) и водорода (H) на Sm 5d и Fe 4p электронные состояния. Отмеченная эффективность процесса азотирования связывается с большим, чем в случае гидрирования, объемным расширением кристаллической решетки исходного Sm₂Fe₁₇. Дополнительно исследованные локальные кривые намагничивания самариеой и железной подрешеток в магнитных полях до 17 Tл свидетельствуют о сильном росте магнитокристаллической анизотропии при азотировании.

DOI: 10.7868/S0370274X18040057

1. Введение. Исследуемое в данной работе соединение Sm_2Fe_{17} принадлежит к тому же семейству магнитных интерметаллических соединений, что и Sm₂Co₁₇, успешно используемое с конца 70-х годов прошлого века для производства высокоэнергетических высококоэрцитивных постоянных магнитов. Однако перспективы промышленного применения сплавов на основе Sm₂Fe₁₇ появились лишь после того, как было обнаружено, что его свойства (в первую очередь, характер магнитокристаллической анизотропии) могут быть радикально улучшены в результате введения атомов внедрения (азота или водорода) в междоузельные позиции в его структуре [1-6]. В частности, при азотировании наблюдается значительный рост температуры магнитного упорядочения Т_с и появление сильной одноосной магнитокристаллической анизотропии. Однако влияние водорода оказалось не столь ярко выраженным, наблюдается сравнительно небольшое увеличение температуры Кюри T_c , но, главное, в гидриде сохраняется плоскостная анизотропия исходного материала Sm₂Fe₁₇ [4, 5]. В этой связи предполагается, что при образовании фаз внедрения изменение T_c связано с магнитообъемными эффектами, в частности, с анизотропным расширением элементарной ячейки и релаксацией взаимодействий, которые влияют на локализацию 3*d*-электронов Fe. Появление одноосной анизотропии в нитриде обусловлено соседством атомов N с атомами Sm в кристаллической структуре и, как следствие, изменением локальной электронной структуры 5*d*-состояний Sm [6].

Для более полного понимания влияния междоузельных атомов азота и водорода на электронные состояния Fe (4p) и Sm (5d) в настоящей работе проведено сравнительное исследование изменений структуры, локальных и макроскопических магнитных свойств интерметаллического соединения Sm₂Fe₁₇, а также нитридов и гидридов на его основе, с помощью метода XMCD (X-ray Magnetic Circular Dichroism), который ранее был с успехом применен нами для исследования локальной магнитной струк-

¹⁾e-mail: apmenushenkov@mephi.ru

²⁾F. Wilhelm

туры магнитотвердых материалов на основе интерметаллического соединения $Nd_2Fe_{14}B$ [7, 8].

2. Экспериментальная часть. Сплавы для исследований номинального состава Sm_2Fe_{17} получали методом вакуумной индукционной плавки в атмосфере очищенного аргона и последующего гомогенизирующего отжига при 1100 °C в течение 40 ч (обработка 1). Гидрирование гомогенизированного сплава Sm_2Fe_{17} проводили по следующей схеме: выдержка при комнатной температуре в водороде под давлением 15 атм до момента прекращения изменения давления водорода в камере реактора +30 мин, дегидрирование в вакууме при 400 °C, повторное гидрирование при комнатной температуре (обработка 2).

Азотирование интерметаллического соединения Sm_2Fe_{17} выполняли в двух режимах: (i) гидрирование-дегидрирование гомогенизированного сплава по схеме (обработка 2), описанной выше, и азотирование при температуре 450 °C и давлении азота 15 атм в течение 20 ч (обработка 3 – частичное азотирование); (ii) то же, что и при обработке 3, однако выдержка при температуре 450 °C и давлении азота 15 атм в течение 40 ч (обработка 4).

Рентгеноструктурные исследования проводили на дифрактометре Rigaku Ultima IV с использованием СоК $_{\alpha}$ -излучения и графитового монохроматора. Для фазового анализа и определения параметров кристаллической структуры исследуемых порошков использовался программный пакет PDXL (Rigaku). Макроскопические магнитные измерения проводили на вибромагнитометре измерительного комплекса PPMS-9 при комнатной температуре в намагничивающем поле до 9 Тл.

Спектры рентгеновского магнитного кругового дихроизма (XMCD) измеряли на линии ID12 в Европейском центре синхротронных исследований ESRF (Гренобль, Франция) [9] с использованием ондулятора APPLE-II, генерирующего циркулярнополяризованное рентгеновское излучение в диапазоне энергий ≥5 кэВ. Спектр XMCD определялся как разность двух рентгеновских спектров поглощения XANES (X-ray Absorption Near Edge Structure), измеренных для двух противоположных круговых поляризаций в геометрии Фарадея. Нами были исследованы поликристаллические образцы исходного Sm_2Fe_{17} , полностью азотированного $Sm_2Fe_{17}N_{2.8}$ (обработка 4) и полностью гидрированного Sm₂Fe₁₇H_{4.6} (обработка 2). Образцы были приготовлены в виде таблеток диаметром ~ 5 мм, спрессованных из мелкодисперсных порошков, и устанавливались в центре сверхпроводящего NbTi-Nb₃Sn соленоида, позволяющего создавать магнитное поле до 17 Тл. Размер пуч-

ка на образце составлял около $0.3 \times 0.5 \,\mathrm{mm^2}$. Измерение XMCD спектров проводилось вблизи К-края поглощения Fe (7.1 кэB) и L_3 -края поглощения Sm (6.7 кэВ) при комнатной температуре в магнитном поле ± 5 Тл. Регистрация спектров осуществлялась в режиме рентгеновской флюоресценции при помощи кремниевого фотодиода, расположенного в геометрии обратного рассеяния на стенке азотного экрана соленоида. Для того, чтобы убедиться, что полученные XMCD спектры не искажены какими-либо экспериментальными артефактами, измерения проводили для двух направлений приложенного магнитного поля, параллельно и антипараллельно направлению распространения рентгеновского излучения. В дополнение к спектрам были измерены локальные ХМСО кривые намагничивания в диапазоне магнитных полей от 0 до 17 Тл.

3. Результаты и обсуждение. По данным рентгеноструктурного анализа сплав после выплавки и гомогенизации (обработка 1) представлял собой стехиометрическое соединение $\text{Sm}_2\text{Fe}_{17}$ (результаты расчетов представлены в табл. 1). Обработка 2 приводила к внедрению водорода в решетку интерметаллида с образованием твердого раствора, описываемого химической формулой $\text{Sm}_2\text{Fe}_{17}\text{H}_n$, и сопровождалась увеличением периодов решетки фазы $\text{Sm}_2\text{Fe}_{17}$ и объема элементарной ячейки на 5%. По литературным данным объемному эффекту соответствует внедрение 4.6 атомов водорода на формульную единицу (ф.е.).

Аналогичным образом, используя имеющиеся в литературе данные об изменениях объема элементарной ячейки интерметаллида Sm₂Fe₁₇ в процессе азотирования [1, 2, 3, 6], было определено количество атомов азота, приходящихся на ф.е., и, соответственно, коэффициент x в химической формуле нитрида $Sm_2Fe_{17}N_x$. Анализ данных рентгеновской дифракции азотированных порошков показал, что после обработки 3 помимо небольшого количества α -Fe (4 \pm 1 %) образовалась двухфазная смесь практически чистого соединения Sm_2Fe_{17} ($25 \pm 2\%$) и $Sm_2Fe_{17}N_x$ с x = 2.8, а после обработки 4 – практически чистая нитридная фаза $Sm_2Fe_{17}N_x$ (с примесью небольшого количества α -Fe $(3 \pm 1 \%))$, также с x = 2.8. Полученное значение хорошо согласуется с x = 2.85, определенным по изменению давления азота в процессе реакции. Отсюда можно заключить, что в отличие от гидридов, где коэффициент n в формуле $Sm_2Fe_{17}H_n$ может иметь различные значения, в зависимости от режимов обработки, при азотировании образуется фаза Sm₂Fe₁₇N_{2.8}, являющаяся стабильным интерметаллическим соединением.

	Фазовый состав	a	c
	%	Å	Å
1	$Sm_2Fe_{17}: 100 \pm 2$	8.559(1)	12.454(1)
2	${}^{a}\mathrm{Sm}_{2}\mathrm{Fe}_{17}\mathrm{H}_{x}$: 98±2	8.681(1)	12.557(1)
	$\alpha\text{-}\mathrm{Fe}$ (cI2): 2±1	2.867(1)	
	$\operatorname{Sm}_2\operatorname{Fe}_{17}: 71\pm 2$	8.560(1)	12.445(1)
3	${}^{b}\mathrm{Sm}_{2}\mathrm{Fe}_{17}\mathrm{N}_{x}$: 25±2	8.738(1)	12.755(1)
	α -Fe (cI2): 4±1	2.873(1)	
4	c Sm ₂ Fe ₁₇ N _x : 97±2	8.743(1)	12.674(1)
	$\alpha\text{-}\mathrm{Fe}$ (cI2): 3 ±1	2.866(1)	

Таблица 1. Результаты фазово-структурного анализа порошков сплава $\rm Sm_2Fe_{17}$ (символ Пирсона – hR19) после различных видов обработок (номер указан в первой колонке)

^{*a*}Объем эл. ячейки гидрида 819.4 Å³, соответствует x = 4.6^{*b*}Объем эл. ячейки нитрида 843 Å³, соответствует x = 2.8^{*c*}Объем эл. ячейки нитрида 839 Å³, соответствует x = 2.8

На рис. 1 представлены нормированные XANES и XMCD спектры, измеренные вблизи K-края поглощения Fe при комнатной температуре в магнитном поле 5 Tл для Sm₂Fe₁₇, Sm₂Fe₁₇N_{2.8} и Sm₂Fe₁₇H_{4.6}. Из рис. 1 следует, что XANES спектры для нитрида претерпевают значительно большие изменения по сравнению с исходным спектром Sm₂Fe₁₇, чем для гидрида.

Рис. 1. (Цветной онлайн) Нормированные XANES и XMCD спектры, измеренные на Fe K-крае поглощения при комнатной температуре в магнитном поле 5 Tл для Sm_2Fe_{17} , $Sm_2Fe_{17}N_{2.8}$ и $Sm_2Fe_{17}H_{4.6}$

Основной эффект заключается в значительном уменьшении амплитуды плечевой особенности при энергии 7114 эВ, в которую дают вклад квадрупольные электронные переходы $1s \rightarrow 3d$, и менее значительном росте амплитуды основного максимума края поглощения, соответствующего дипольному переходу $1s \rightarrow 4p$ в атомах Fe. Уменьшение амплитуды квадрупольных переходов указывает на перестрой-

ку локального окружения железа, которое претерпевает значительно большее изменение при азотировании, чем при гидрировании исходного Sm_2Fe_{17} , а рост амплитуды основного максимума свидетельствует о некотором увеличении плотности свободных состояний Fe 4p зоны при внедрении междоузельных атомов азота и существенно меньшем влиянии внедренных атомов водорода.

Анализ XANES спектров, измеренных на Sm L_3 крае поглощения (рис. 2), указывает на рост амплитуды основного максимума (так называемой "белой линии"), соответствующего дипольному переходу $2p \rightarrow 5d$, что, по-видимому, связано с более высокой степенью локализации 5*d*-состояний самария под влиянием исследуемых модификаций. Обнаруженный эффект гораздо сильнее проявляется для нитридов, чем для гидридов, как и эффект влияния на плотность состояний Fe 4*p* зоны.

Рис. 2. (Цветной онлайн) Нормированные XANES и XMCD спектры, измеренные на Sm L_3 -крае поглощения, при комнатной температуре в магнитном поле 5 Tл для Sm₂Fe₁₇, Sm₂Fe₁₇N_{2.8} и Sm₂Fe₁₇H_{4.6}

Спектры XMCD на *К*-крае поглощения Fe (рис. 1) имеют сложную структуру и состоят из основного положительного пика, двойного отрицательного расщепленного пика и дополнительного положительного максимума, расположенных по возрастанию энергий. Структура сигнала Fe 4p зоны указывает на слабый зонный ферромагнетизм железа с неполностью заполненной 3d зоной [10]. При гидрировании существенного изменения сигнала не наблюдается, тогда как азотирование приводит к уменьшению интенсивности отрицательного сигнала и значительному увеличению положительного пика. Этот результат указывает на заметное влияние внедренного азота на поляризацию Fe 4p зоны и слабый эффект в случае гидрирования. Сохранение положительного XMCD сигнала в области низких

энергий позволяет сделать вывод о том, что ни азотирование, ни гидрирование не приводят к появлению сильного зонного ферромагнетизма железа [10].

Спектры XMCD на L_3 -крае поглощения Sm (см. рис. 2) демонстрируют уменьшение амплитуды сигнала для нитрида при почти полном его сохранении для гидрида. Данный эффект, возможно, объясняется уменьшением 5*d*-3*d* гибридизации, вызванным ковалентным действием азота, тогда как водород оказывает на это незначительное влияние. Данный результат отвечает уменьшению коэффициента кристаллического поля $n_{\text{RE-TM}}$, обнаруженному в расчетах температуры Кюри T_c [1, 2] и нейтронных измерениях [11] для нитридов, что соответствует уменьшению силы магнитной связи между спинами 4f электронов редкоземельного (Sm) и 3d электронов переходного (Fe) элементов. Последнее было качественно предсказано на основе изменения хода зависимости температуры Кюри $T_{\rm c}$ для ${\rm RE}_2{\rm Fe}_{17}$ и RE₂Fe₁₇N_{2.5} от типа редкоземельного (RE) элемента [3]. Уменьшение ХМСД сигнала также может быть связано с ростом магнитокристаллической анизотропии при азотировании в рамках векторной модели [12]. По-видимому, эффективность процесса азотирования обусловлена вызванным им более значительным расширением элементарной ячейки $\mathrm{Sm}_2\mathrm{Fe}_{17}$ $(\delta a_{\rm N} = 2.1\%$ и $\delta c_{\rm N} = 1.7\%)$, чем в случае гидрирования ($\delta a_{\rm H} = 1.4\%$ и $\delta c_{\rm H} = 0.8\%$) (см. табл. 1), что соответствует результатам работ [1, 4]. Обсужденные выше данные качественно согласуются с результатами работы [12], где также сообщается о сильном влиянии азота и незначительном влиянии водорода на Sm 5d и Fe 4p электронные состояния.

Макроскопические петли магнитного гистерезиса и основные гистерезисные характеристики (коэрцитивная сила H_c , удельная остаточная намагниченность σ_r и удельная намагниченность в поле 9 Тл) порошков сплава Sm₂Fe₁₇, измеренные на установке PPMS-9 после различных обработок, приведены на рис. 3 и в табл. 2. Наблюдаемые отличия указывают на существенное влияние типа обработки на магнитные свойства.

Из рис. 3 следует, что сплав после гидрирования также, как и исходный гомогенизированный сплав Sm₂Fe₁₇, легко намагничивается в слабых полях, что указывает на сохранение "плоскостного" характера магнитокристаллической анизотропии у гидрида. Однако его удельная намагниченность в поле 9 Тл на 8% выше, что, очевидно, связано с увеличением объема элементарной ячейки (предположительно вследствие уменьшения вероятности антипараллель-

235

Рис. 3. (Цветной онлайн) Петли гистерезиса порошков сплава Sm_2Fe_{17} после различных обработок (сплошные и штрихпунктирные линии) и ХМСD кривые намагничивания на Fe K- и Sm L_3 -краях поглощения, измеренные при 20 °C в диапазоне магнитных полей от 0 до 17 Тл для Sm_2Fe_{17} , $Sm_2Fe_{17}N_{2.8}$ и $Sm_2Fe_{17}H_{4.6}$. Пустые символы – K-край Fe, заполненные символы – L_3 -край Sm

Таблица 2. Гистерезисные характеристики (коэрцитивная сила H_c , остаточная намагниченность σ_r и удельная намагниченность σ в поле 9 Тл) порошков сплава Sm₂Fe₁₇ после различных обработок (номер обработки указан в первой колонке)

	$H_{\rm c}$	σ_r	$\sigma(9 \text{Tл})$
	(кА/м)	$(\mathrm{A}{\cdot}\mathrm{m}^2/\mathrm{kr})$	$(\mathrm{A}{\cdot}\mathrm{m}^2/\mathrm{kg})$
Nº1	3.0	2.2	124.4
№2	1.4	0.7	134.9
№ 3	9.55	7.5	123.7
№4	32.6	11.0	123.6

ной ориентации магнитных моментов в гантельных парах Fe-Fe).

Сплавы после азотирования намагничиваются труднее, что свидетельствует о присутствии в их структуре фазы с высокой одноосной магнитокристаллической анизотропией, которой, безусловно, является нитрид $Sm_2Fe_{17}N_{2.8}$. При этом порошки сплава Sm_2Fe_{17} после обработки 4 далеки от насыщения даже в полях 9 Тл (рис. 3). Это указывает на то, что поле анизотропии фазы $Sm_2Fe_{17}N_{2.8}$ существенно выше этой величины, а также на значительное влияние объемных эффектов, связанных с внедрением атомов азота в решетку интерметаллида Sm_2Fe_{17} , на его магнитную структуру (в частности, на намагниченность подрешетки железа).

В дополнение к проведенному выше анализу макроскопических петель намагничивания были выполнены измерения локальных XMCD кривых намагничивания на L₃-крае поглощения Sm и K-крае поглощения Fe, которые также приведены на рис. 3. Кривые измеряли в широком диапазоне магнитных полей от 0 до 17 Tл при энергиях рентгеновских фотонов, соответствующих первым основным пикам XMCD сигналов: 7112 эВ для Fe K- и 6711 эВ для Sm L_3 -краев поглощения. Поведение XMCD кривых намагничивания показывает, что азотирование достаточно сильно уменьшает магнитные моменты, локализованные на ионах железа и немного увеличивает магнитные моменты, локализованные на ионах самария, при этом влияние гидрирования проявляется значительно слабее, что подтверждается наблюдением роста магнитокристаллической анизотропии при азотировании.

4. Заключение. На основе проведенных совместных макроскопических и локальных исследований магнитных и структурных свойств установлено, что формирующиеся в результате процессов гидрирования и азотирования интерметаллического соединения Sm₂Fe₁₇ фазы внедрения существенно различаются по своей природе. Образующаяся в процессе водородной обработки фаза $Sm_2Fe_{17}H_n$ (hR19) представляет собой твердый раствор водорода (величина n зависит от режимов обработки) в решетке Sm_2Fe_{17} , тогда как фаза $\mathrm{Sm}_2\mathrm{Fe}_{17}\mathrm{N}_x$ является интерметаллическим соединением (значение коэффициента х зависит от режима обработки). Кроме того, увеличение объема элементарной ячейки в процессе образования фаз внедрения в случае водорода не приводит к изменению типа магнитокристаллической анизотропии ("легкая плоскость"), тогда как в нитридах она трансформируется в анизотропию типа "легкая ось".

Методом XMCD на Fe K- и Sm L_3 -краях поглощения проведено сравнительное исследование влияния процессов азотирования и гидрирования на локальные электронные и магнитные свойства Sm₂Fe₁₇. В результате установлено, что внедренные в междоузлия атомы азота, вследствие расширения элементарной ячейки, вызывающего релаксацию связей, оказывают значительное влияние на Sm 5d и Fe 4p электронные зоны. Это проявляется в уменьшении 5d-3dгибридизации, вызванной расширением решетки и ковалентным действием азота и согласуется с поведением Fe K- и Sm L_3 -XMCD кривых намагничивания, указывающим на то, что азотирование, в отличие от гидрирования, достаточно сильно уменьшает магнитные моменты, локализованные на ионах железа, и немного увеличивает магнитные моменты, локализованные на ионах самария. Отмеченный факт подтверждается наблюдением роста магнитокристаллической анизотропии Sm₂Fe₁₇ при азотировании.

Работа поддержана Министерством образования и науки Российской Федерации (соглашение #14.587.21.0028, уникальный номер проекта RFMEFI58716X0028) и Европейским центром синхротронных исследований (ESRF) (проект MA-3314).

- H. Sun, J.M.D. Coey, Y. Otani, and D.P.F. Hurley, J. Phys: Condens. Matter. 2 (30), 6465 (1990).
- Y. Otani, D.P.F. Hurley, H. Sun, and J.M.D. Coey, J. Appl. Phys. 69(8), 5584 (1991).
- K. H. J. Buschow, R. Coehoorn, D. B. de Mooij, K. de Waard, and T. H. Jacobs, J. Magn. Magn. Mater. 92(1), L35 (1990).
- D. Fruchart and S. Miraglia, J. Appl. Phys. 69(8), 5578 (1991).
- O. Isnard, S. Miraglia, J. L. Soubeyroux, D. Fruchart, and P. l'Héritier, J. Magn. Magn. Mater. 137(1), 151 (1994).
- J. M. D. Coey, J. F. Lawler, H. Sun, and J. E. M. Allan, J. Appl. Phys. 69(5), 3007 (1991).
- A.P. Menushenkov, V.G. Ivanov, I.V. Shchetinin, D.G. Zhukov, V.P. Menushenkov, I.A. Rudnev, A.A. Ivanov, F. Wilhelm, A. Rogalev, and A.G. Savchenko, JETP Lett. **105**(1), 38 (2017).
- A.P. Menushenkov, V.G. Ivanov, I.V. Shchetinin, D.G. Zhukov, V.P. Menushenkov, I.A. Rudnev, F. Wilhelm, A. Rogalev, and A.G. Savchenko, J. Phys.: Conf. Series 747(1), 012039 (2016).
- A. Rogalev and F. Wilhelm, Phys. Metal. Metallogr. 116(13), 1285 (2015).
- O. Isnard, S. Miraglia, D. Fruchart, C. Giorgetti, S. Pizzini, E. Dartyge, G. Krill, and J. P. Kappler, Phys. Rev. B 49, 15692 (1994).
- M. Loewenhaupt, P. Tils, D.P. Middleton, K.H.J. Buschow, and R. Eccleston, J. Magn. Magn. Mater. 129(2), L151 (1994).
- Cz. Kapusta, R. Mycielski, B. Porębska, D. Ahlers, K. Attenkofer, P. Fischer, and G. Schütz, Acta Phys. Pol. A **91**(5), 975 (1997).