$K\bar{K}$ -петлевой механизм нарушения изотопической симметрии в распаде $\eta(1405) \rightarrow f_0(980)\pi^0 \rightarrow \pi^+\pi^-\pi^0$. Роль аномальных порогов Ландау

 $H. H. Ачасов^{1)}, \Gamma. H. Шестаков$

Лаборатория теоретической физики, Институт математики им. С.Л. Соболева СО РАН, 630090 Новосибирск, Россия

Поступила в редакцию 9 января 2018 г. После переработки 18 января 2018 г.

Анализируется аномальное нарушение изотопической симметрии в распаде $\eta(1405) \rightarrow f_0(980)\pi^0 \rightarrow \pi^+\pi^-\pi^0$ за счет механизма, содержащего аномальные пороги Ландау (логарифмические треугольные сингулярности), т.е. за счет перехода $\eta(1405) \rightarrow (K^*\bar{K} + \bar{K}^*K) \rightarrow (K^+K^- + K^0\bar{K}^0)\pi^0 \rightarrow f_0(980)\pi^0 \rightarrow \pi^+\pi^-\pi^0$. Показано, что для оценки эффекта принципиально важным оказывается учет конечной ширины K^* -мезона. Приводится сравнение различных масштабов нарушения изотопической симметрии, связанного с разностью масс K^+ - и K^0 -мезонов.

DOI: 10.7868/S0370274X18050028

В 2012 г. коллаборация ВЕSIII измерила распады $J/\psi \rightarrow \gamma \pi^+ \pi^- \pi^0$ и $J/\psi \rightarrow \gamma \pi^0 \pi^0 \pi^0$ и обнаружила в трехпионных спектрах масс в районе 1.4 ГэВ резонансный пик шириной около 50 МэВ [1]. При этом оказалось, что в соответствующих $\pi^+\pi^-$ - и $\pi^0\pi^0$ -спектрах масс в районе 990 МэВ (т.е. в области K^+K^- - и $K^0\bar{K}^0$ -порогов) содержится узкая структура с шириной около 10 МэВ [1]. Таким образом, в этом эксперименте впервые наблюдался (со статистической достоверностью, большей чем 10σ) нарушающий изоспин распад $J/\psi \rightarrow \gamma \eta (1405) \rightarrow \gamma f_0(980) \pi^0$ с последующим распадом $f_0(980) \rightarrow \pi^+\pi^-, \pi^0\pi^0$. Согласно данным [1]:

$$BR(J/\psi \to \gamma \eta (1405) \to \gamma f_0(980)\pi^0 \to \gamma \pi^+ \pi^- \pi^0) =$$

= (1.50 ± 0.11 ± 0.11) · 10⁻⁵. (1)

С учетом данных Particle Data Group (PDG) коллаборация BESIII получила также величину для отношения [1]:

$$\frac{BR(\eta(1405) \to f_0(980)\pi^0 \to \pi^+\pi^-\pi^0)}{BR(\eta(1405) \to a_0^0(980)\pi^0 \to \eta\pi^0\pi^0)} = (17.9 \pm 4.2)\%, \qquad (2)$$

которая практически исключает возможность объяснения найденного эффекта нарушения изотопической симметрии за счет механизма $a_0^0(980) - f_0(980)$ -смешивания [т.е. за счет перехода $a_0^0(980) \rightarrow (K^+K^- + K^0\bar{K}^0) \rightarrow f_0(980)$].

В то же время узкая структура резонансного типа, обнаруженная в $\pi^+\pi^-$ - и $\pi^0\pi^0$ -спектрах масс в распадах $\eta(1405) \rightarrow \pi^+\pi^-\pi^0$, $\pi^0\pi^0\pi^0$ в области K^+K^- - и $K^0\bar{K}^0$ -порогов, указывает, что механизм, ответственный за рождение $f_0(980)$ резонанса в распаде $\eta(1405) \rightarrow f_0(980)\pi^0 \rightarrow 3\pi$, подобен механизму $a_0^0(980) - f_0(980)$ -смешивания [2-4], т.е. обусловлен $K\bar{K}$ -петлевым переходом $\eta(1405) \rightarrow (K^+K^- + K^0\bar{K}^0)\pi^0 \rightarrow f_0(980)\pi^0 \rightarrow 3\pi$, амплитуда которого не исчезает, благодаря разности масс K^+ - и K^0 -мезонов, и оказывается значительной в узкой области между K^+K^- - и $K^0\bar{K}^0$ -порогами.

Сравнение результата (1), полученного BESIII, с данными PDG [5] для доминирующего канала распада $J/\psi \to \gamma \eta (1405/1475) \to \gamma K \bar{K} \pi$,

$$BR(J/\psi \to \gamma \eta (1405/1475) \to \gamma K \bar{K} \pi) =$$

= (2.8 ± 0.6) \cdot 10^{-3}, (3)

дает

$$\frac{BR(J/\psi \to \gamma \eta (1405) \to \gamma f_0(980)\pi^0 \to \gamma \pi^+ \pi^- \pi^0)}{BR(J/\psi \to \gamma \eta (1405/1475) \to \gamma K \bar{K} \pi)} = (0.53 \pm 0.13)\%.$$
(4)

Значение этого отношения также говорит об очень большом нарушении изотопической инвариантности в распаде $\eta(1405) \rightarrow f_0(980)\pi^0$.

Далее мы анализируем возможность теоретического объяснения сильного нарушения изотопической инвариантности в распаде $\eta(1405) \rightarrow f_0(980)\pi^0 \rightarrow \pi^+\pi^-\pi^0$ за счет аномальных порогов Ландау (или логарифмических треугольных сингулярностей), которые присутствуют в

¹⁾e-mail: achasov@math.nsc.ru

амплитуде перехода $\eta(1405) \rightarrow (K^*\bar{K} + \bar{K}^*K) \rightarrow K\bar{K}\pi^0 \rightarrow f_0(980)\pi^0 \rightarrow \pi^+\pi^-\pi^0$ (см. диаграмму на рис. 1) вблизи $K\bar{K}$ -порогов. Попытки объяснить

Рис. 1. Диаграмма распада $\eta(1405) \rightarrow (K^*\bar{K} + \bar{K}^*K) \rightarrow K\bar{K}\pi^0 \rightarrow f_0(980)\pi^0 \rightarrow \pi^+\pi^-\pi^0$. В области $\eta(1405)$ -резонанса все промежуточные частицы в треугольной петле этой диаграммы могут находиться на массовой поверхности. Как следствие, в гипотетическом случае стабильного K^* -мезона в мнимой части амплитуды этой треугольной диаграммы возникает логарифмическая сингулярность [10–13]. p_1, p_2, p_3 обозначают 4-импульсы частиц в реакции, $p_1^2 = s_1 - \kappa$ вадрат инвариантной массы $\eta(1405)$ -резонанса или конечной $\pi^+\pi^-\pi^0$ -системы, $p_2^2 = s_2 - \kappa$ вадрат инвариантной массы $f_0(980)$ или конечной $\pi^+\pi^-$ -системы, $p_3^2 = m_{\pi^0}^2$

распад $\eta(1405) \to f_0(980)\pi^0 \to \pi^+\pi^-\pi^0$ с помощью такого механизма были предприняты в работах [6–9]. Вскоре после этого мы обратили внимание, что в проведенных расчетах векторный К*-мезон, $K^{*}(892)$, в промежуточном состоянии считался стабильной частицей, и показали [10], что учет его конечной ширины, $\Gamma_{K^*} \approx \Gamma_{K^* \to K\pi} \approx 50 \,\mathrm{M}\mathfrak{s}\mathrm{B},$ сглаживает логарифмические сингулярности в амплитуде и приводит к уменьшению рассчитываемой вероятности распада $\eta(1405) \to f_0(980)\pi^0 \to \pi^+\pi^-\pi^0$ в 6-8 раз по сравнению со случаем $\Gamma_{K^*} = 0.$ Предполагая также доминантность распада $\eta(1405) \to (K^*\bar{K} + \bar{K}^*K) \to K\bar{K}\pi^0$, мы получили оценку [10]:

$$BR(J/\psi \to \gamma \eta(1405) \to \gamma f_0(980)\pi^0 \to \gamma \pi^+ \pi^- \pi^0) \approx \approx 1.12 \cdot 10^{-5},$$
(5)

разумно согласующуюся с данными BESIII [1], приведенными в (1).

Здесь в отличие от работы [10] мы подробно показываем, как при учете конечной ширины K^* -мезона исчезает логарифмическая сингулярность (т.е. как в итоге модифицируются мнимая и реальная части амплитуды, нарушающей изоспин) и как возникает узкая резонансная структура в $\pi^+\pi^-$ -спектре масс в распаде $\eta(1405) \rightarrow f_0(980)\pi^0 \rightarrow \pi^+\pi^-\pi^0$. Кроме того, мы впервые демонстрируем резкое изменение на 90° фазы амплитуды рождения $f_0(980)$ -резонанса в области между K^+K^- - и $K^0\bar{K}^0$ -порогами.

Рис. 2. Сплошные кривые на плоскости $(\sqrt{s_2}, \sqrt{s_1})$ показывают положения логарифмической сингулярности в мнимой части треугольной диаграммы (см. рис. 1), отвечающей вкладам $K^{*+}K^{-}$ - и $K^{*0}\bar{K}^{0}$ промежуточных состояний. Пунктирными вертикальными линиями отмечены K^+K^- - и $K^0\bar{K}^0$ -пороги по переменной $\sqrt{s_2}$ (т.е. ее значения, равные $2m_{K^+}$ = 0.987354 ГэВ и 2m_{к0} = 0.995344 ГэВ). Пунктирными горизонтальными линиями отмечены значения переменной $\sqrt{s_1}$, равные 1.404 ГэВ, 1.440 ГэВ и 1.497 ГэВ. При 1.404 ГэВ $< \sqrt{s_1} < 1.497$ ГэВ логарифмическая сингулярность для случая $K^{*+}K^{-}$ -промежуточного состояния располагается при значениях $\sqrt{s_2}$, находящихся между K^+K^- - и $\bar{K}^0\bar{K}^0$ -порогами, а для случая $K^{*0}\bar{K}^0$ -промежуточного состояния она не уходит от $K^0 \bar{K}^0$ -порога дальше, чем на 6 МэВ. Приблизительно при значении $\sqrt{s_1} = 1.440 \, \Gamma$ эВ сингулярности касаются $K\bar{K}$ -порогов

Чтобы как можно яснее продемонстрировать влияние ширины K^* -мезона на расчет нарушающей изоспин диаграммы, показанной на рис. 1, мы пренебрежем наличием спиновых эффектов, которые лишь существенно усложняют промежуточные вычисления [10], но фактически никак не сказываются на конечном результате (т.е. будем далее считать K^* бесспиновой частицей).²⁾

 $^{^{2)}}$ Следует также отметить, что сходимость или расходимость треугольной диаграммы, как и $K\bar{K}$ -петель в случае $a_0^0(980) \to (K^+K^- + K^0\bar{K}^0) \to f_0(980)$ -перехода, не имеет отношения к обсуждаемому эффекту нарушения изоспина. Сумма констант вычитания для вкладов заряженных и нейтральных промежуточных состояний в дисперсионном представлении для нарушающей изоспин амплитуды имеет естественный порядок малости $\sim (m_{K^0} - m_{K^+})$ и не может отвечать за усиление нарушения симетрии в узкой области около K^+K^- - и $K^0\bar{K}^0$ -порогов.

Для амплитуды треугольной петли (см. рис. 1) введем обозначение:

$$T = 2\frac{g_1 g_2 g_3}{16\pi} [F_+(s_1, s_2) - F_0(s_1, s_2)], \tag{6}$$

где g_1, g_2, g_3 – константы связи в вершинах (они полагаются одинаковыми для заряженных и нейтральных каналов), амплитуды $F_+(s_1, s_2)$ и $F_0(s_1, s_2)$ описывают вклады заряженного и нейтрального промежуточных состояний соответственно, а множитель 2 учитывает, что таких вкладов два. При этом нарушение изоспина в рассматриваемой диаграмме мы связываем только с разностью масс стабильных заряженных и нейтральных *K*-мезонов и полагаем $m_{K^{*+}} = m_{K^{*0}} = 0.8955 \Gamma$ эВ. Амплитуда $F_+ \equiv$ $\equiv F_+(s_1, s_2)$ имеет вид

$$F_{+} = \frac{\mathrm{i}}{\pi^{3}} \int \frac{d^{4}k}{D_{1}D_{2}D_{3}},\tag{7}$$

где $D_1 = (k^2 - m_{K^{*+}}^2 + i\varepsilon), D_2 = ((p_1 - k)^2 - m_{K^-}^2 + i\varepsilon)$ и $D_3 = ((k - p_3)^2 - m_{K^+}^2 + i\varepsilon)$ – обратные пропагаторы частиц в петле. В области $s_1 \ge (m_{K^{*+}} + m_{K^+})^2$ и $s_2 \ge 4m_{K^+}^2$ мнимая часть F_+ слагается из мнимой части, которая определяется скачком на $K^{*+}K^{-}$ -разрезе по переменной s_1 , и мнимой части, которая определяется скачком на K^+K^- -разрезе по переменной s_2 :

$$\mathrm{Im}F_{+} = \mathrm{Im}F_{+}^{(K^{*+}K^{-})} + \mathrm{Im}F_{+}^{(K^{+}K^{-})}, \qquad (8)$$

$$\operatorname{Im} F_{+}^{(K^{*+}K^{-})} = \frac{1}{\sqrt{\Delta}} \ln \left[\frac{\alpha_{+} + \sqrt{\Delta\delta_{+}}}{\alpha_{+} - \sqrt{\Delta\delta_{+}}} \right], \qquad (9)$$

$$\operatorname{Im} F_{+}^{(K^{+}K^{-})} = \frac{1}{\sqrt{\Delta}} \ln \left[\frac{\alpha'_{+} + \sqrt{\Delta\delta'_{+}}}{\alpha'_{+} - \sqrt{\Delta\delta'_{+}}} \right], \quad (10)$$

где

$$\Delta = s_1^2 - 2s_1(s_2 + m_{\pi^0}^2) + (s_2 - m_{\pi^0}^2)^2, \qquad (11)$$

$$+ (s_2 - m_{\pi^0}^2)(m_{K^+}^2 - m_{K^{*+}}^2), \qquad (12)$$

$$\delta_{+} = s_{1}^{2} - 2s_{1}(m_{K^{*+}}^{2} + m_{K^{+}}^{2}) + (m_{K^{*+}}^{2} - m_{K^{+}}^{2})^{2}, \quad (13)$$

$$\alpha'_{+} = s_2(s_2 - s_1 - m_{\pi^0}^2 - 2m_{K^+}^2 + 2m_{K^{*+}}^2), \quad (14)$$

$$\delta'_{+} = s_2(s_2 - 4m_{K^+}^2). \tag{15}$$

Заменяя в (7)–(15) индекс + на индекс 0 у функций и массы заряженных промежуточных частиц на массы их нейтральных партнеров, мы получим все, что нужно для описания амплитуды $F_0 \equiv F_0(s_1, s_2)$.

Особенность рассматриваемого случая состоит в том, что в области $\eta(1405)$ -резонанса все промежуточные частицы в треугольной диаграмме на рис. 1

Рис. 3. (Цветной онлайн) Мнимые (реальные) части амплитуды $F_+(s_1, s_2)$ – сплошные (штриховые) кривые для заряженного промежуточного состояния и амплитуды $F_0(s_1, s_2)$ для нейтрального промежуточного состояния в треугольной петле, рассчитанные в гипотетическом случае стабильного промежуточного K^* -мезона

могут находиться на массовой поверхности. Такая ситуация имеет место при значениях кинематических переменных s_1 и s_2 , связанных между собой соотношениями

$$\alpha_{+,0} = \pm \sqrt{\Delta \delta_{+,0}} \tag{16}$$

или эквивалентными соотношениями

$$\alpha'_{+,0} = \pm \sqrt{\Delta \delta'_{+,0}}.$$
(17)

Следовательно, в гипотетическом случае стабильного К*-мезона в мнимой части амплитуды этой треугольной диаграммы имеется логарифмическая сингулярность [10-13]. На рис. 2 показано, где на плоскости $(\sqrt{s_2}, \sqrt{s_1})$ расположены логарифмические сингулярности, обусловленные вкладами $K^{*+}K^{-}$ - и $K^{*0}\bar{K}^{0}$ -промежуточных состояний. Как видно, в области $\eta(1405)$ -резонанса они находятся очень близко к KK-порогам (положения которых отмечены на этом рисунке, а также на других рисунках ниже, пунктирными вертикальными линиями). Например, при $\sqrt{s_1} = 1.420 \, \Gamma$ эВ сингулярности во вкладах $K^{*+}K^{-}$ -
и $K^{*0}\bar{K}^{0}$ -промежуточных состояний проявляют себя при значениях инвариантной массы $\pi^+\pi^-$ системы $\sqrt{s_2} \approx 0.989 \, \Gamma$ эВ и $0.998 \, \Gamma$ эВ соответственно (см. рис. 2). На рис. 3 представлен типичный пример поведения мнимых и реальных частей амплитуд

 $K\bar{K}$ -петлевой механизм нарушения изотопической симметрии в распаде $\eta(1405) \rightarrow f_0(980)\pi^0 \rightarrow \pi^+\pi^-\pi^0 \dots 295$

Рис. 4. (Цветной онлайн) Квадрат модуля и квадрат реальной части амплитуды треугольной петли $F(s_1, s_2) \equiv F_+(s_1, s_2) - F_0(s_1, s_2)$, нарушающей изотопическую инвариантность, отвечающие гипотетическому случаю стабильного промежуточного K^* -мезона. Интегральные вклады от мнимой и реальной частей амплитуды здесь приблизительно одинаковые

 $F_{+}(s_{1}, s_{2}), F_{0}(s_{1}, s_{2})$ как функций $\sqrt{s_{2}}$ в районе $K\bar{K}$ -порогов при разных $\sqrt{s_{1}}$ в области $\eta(1405)$ -резонанса, конкретно при $\sqrt{s_{1}} = 1.420$ ГэВ. Картина характеризуется сингулярностями в $\mathrm{Im}F_{+,0}(s_{1}, s_{2})$ и скачками в $\mathrm{Re}F_{+,0}(s_{1}, s_{2})$.

Так как расположенные в разных местах сингулярности от заряженных и нейтральных промежуточных состояний не компенсируют друг друга, то может показаться, что рассматриваемый механизм ведет к катастрофическому нарушению изотопической симметрии в распаде $\eta(1405) \rightarrow \pi^+\pi^-\pi^0$, как это иллюстрирует рис. 4.

Однако в действительности такая "сингулярная картина" реализоваться не может. Учет конечной пирины K^* -резонанса (т.е. усреднение амплитуды по резонансному брейт-вигнеровскому распределению K^* в соответствии со спектральным представлением Челлена–Лемана для пропагатора нестабильного K^* -мезона [11–13]) замазывает логарифмические особенности в амплитуде и тем самым усиливает компенсацию вкладов ($K^{*+}K^- + K^{*-}K^+$)- и ($K^{*0}\bar{K}^0 + \bar{K}^{*0}K^0$)-промежуточных состояний. В результате это приводит к уменьшению рассчитываемой ширины распада $\eta(1405) \rightarrow \pi^+\pi^-\pi^0$ в несколько раз по сравнению со случаем $\Gamma_{K^* \rightarrow K\pi} = 0$ и сосре-

Рис. 5. (Цветной онлайн) Мнимые (реальные) части амплитуды $\bar{F}_+(s_1,s_2)$ – сплошные (штриховые) кривые для заряженного промежуточного состояния и амплитуды $\bar{F}_0(s_1,s_2)$ для нейтрального промежуточного состояния в треугольной петле, рассчитанные с учетом нестабильности промежуточного K^* -мезона

доточению основного эффекта нарушения изоспина в области инвариантных масс $\pi^+\pi^-$ между $K\bar{K}$ порогами.

Итак, согласно сказанному выше, запишем пропагатор нестабильного K^* -мезона в форме спектрального представления Челлена–Лемана [11–13]:

$$\frac{1}{m_{K^*}^2 - k^2 - \mathrm{i}m_{K^*}\Gamma_{K^*}} \to \int_{(m_K + m_\pi)^2}^{\infty} dm^2 \frac{\rho(m^2)}{m^2 - k^2 - \mathrm{i}\varepsilon}$$
(18)

и аппроксимируем $\rho(m^2)$ следующим образом:

$$\rho(m^2) = \frac{1}{\pi} \frac{m_{K^*} \Gamma_{K^*}}{(m^2 - m_{K^*}^2)^2 + (m_{K^*} \Gamma_{K^*})^2}.$$
 (19)

Далее заменим в формулах для амплитуд $F_{+,0}(s_1, s_2)$ квадрат массы K^* -мезона $m_{K^*}^2$ на квадрат переменной массы m^2 и определим взвешенные со спектральной плотностью $\rho(m^2)$ амплитуды [11–13]:

$$\bar{F}_{+,0}(s_1, s_2) = \int_{(m_K + m_\pi)^2}^{\infty} \rho(m^2) F_{+,0}(s_1, s_2; m^2) dm^2.$$
(20)

Рис. 5 иллюстрирует поведение мнимых и реальных частей взвешенных амплитуд $\bar{F}_+(s_1, s_2)$ и $\bar{F}_0(s_1, s_2)$ как функций $\sqrt{s_2}$ в районе $K\bar{K}$ -порогов при $\sqrt{s_1} =$ = 1.420 ГэВ. Сравнение этого рисунка с рис. 3 показывает, что от сингулярного поведения амплитуд

Рис. 6. (Цветной онлайн) (a) – Модуль, мнимая и реальная части амплитуды треугольной петли $\bar{F}(s_1, s_2) = \bar{F}_+(s_1, s_2) - \bar{F}_0(s_1, s_2)$, полученные с учетом нестабильности промежуточного K^* -мезона. (b) – Фаза амплитуды $\bar{F}(s_1, s_2)$

Рис. 7. (Цветной онлайн) Квадрат модуля и квадрат мнимой части амплитуды треугольной петли $\bar{F}(s_1, s_2) = \bar{F}_+(s_1, s_2) - \bar{F}_0(s_1, s_2)$, полученные с учетом нестабильности промежуточного K^* -мезона. Представленную картину следует сравнить с рис. 4

 $F_+(s_1, s_2)$ и $F_0(s_1, s_2)$ фактически ничего не остается после учета нестабильности промежуточного K^* мезона.

Модуль, мнимая и реальная части, а также фаза амплитуды треугольной петли $\bar{F}(s_1,s_2)$ \equiv

 $\equiv \bar{F}_+(s_1, s_2) - \bar{F}_0(s_1, s_2)$, нарушающей изотопическую инвариантность, рассчитанные с учетом нестабильности промежуточного K^* -мезона, представлены на рис. 6. Как видно, все характерные особенности амплитуды $\bar{F}(s_1, s_2)$ привязаны к $K\bar{K}$ -порогам и поведение ее модуля и фазы во многом подобно поведению модуля и фазы амплитуды $a_0^0(980) - f_0(980)$ смешивания [2, 4].

Показанный на рис. 7 квадрат модуля амплитуды $\overline{F}(s_1, s_2) = \overline{F}_+(s_1, s_2) - \overline{F}_0(s_1, s_2)$, полученный с учетом нестабильности промежуточного K^* -мезона, следует сравнить с аналогичной величиной на рис. 4 для случая $\Gamma_{K^*} = 0$. Отметим, что площади под соответствующими кривыми на этих рисунках различаются приблизительно на порядок. Таково влияние величины $\Gamma_{K^*} = 50 \text{ МэВ. Отметим также, что модифи$ кация за счет конечной ширины К^{*}-мезона вкладов логарифмических треугольных сингулярностей (наличие которых определяется лишь условиями (16) или (17) и не связано со спиновой структурой частиц) остается практически неизменной и при учете спиновых эффектов в распаде $\eta(1405) \rightarrow (K^*\bar{K} + \bar{K}^*K) \rightarrow$ $\rightarrow (K^+K^- + K^0\bar{K}^0)\pi^0 \rightarrow f_0(980)\pi^0 \rightarrow \pi^+\pi^-\pi^0$, что явно демонстрирует результат расчета, приведенный в [10].

Аналогичные картины имеют место при всех значениях $\sqrt{s_1}$ в области $\eta(1405)$ -резонанса. На рис. 8 мы привели общий вид спектра масс $\pi^+\pi^-$ в распаде $\eta(1405) \rightarrow \pi^+\pi^-\pi^0$, рассчитанный при номинальной массе $\eta(1405)$, т.е. при $\sqrt{s_1} = 1.405$ ГэВ, по формуле

$$\frac{dN}{d\sqrt{s_2}} = C\sqrt{\frac{\Delta}{s_1}} \left| \bar{F}_+(s_1, s_2) - \bar{F}_0(s_1, s_2) \right|^2 \times \\
\times \frac{s_2 \Gamma_{f_0 \to \pi^+ \pi^-}(\sqrt{s_2})}{\pi |D_{f_0}(\sqrt{s_2})|^2},$$
(21)

где C – нормировочная постоянная, $\Gamma_{f_0 \to \pi^+ \pi^-}(\sqrt{s_2})$ и $D_{f_0}(\sqrt{s_2})$ – ширина распада на $\pi^+ \pi^-$ и обратный пропагатор $f_0(980)$ [14].

Рис. 8. Иллюстрация формы спектра масс $\pi^+\pi^-$ в распаде $\eta(1405) \rightarrow \pi^+\pi^-\pi^0$, построенного по формуле (21), отвечающей вкладу диаграммы на рис. 1. Точки с ошибками — первые данные BESIII по этому распаду [1]

В заключение перечислим возможные масштабы нарушения изотопической симметрии, индуцированного разностью масс K^+ - и K^0 -мезонов, которые могут возникать в различных реакциях.

Итак, обычный порядок нарушения изотопической симметрии в амплитуде процесса, определяемый разностями масс частиц в мезонных изотопических мультиплетах,

$$\simeq (m_{K^0} - m_{K^+})/m_{K^0} \approx 1/126;$$
 (22)

порядок нарушения симметрии в амплитуде процесса в области между K^+K^- - и $K^0\bar{K}^0$ -порогами за счет любого механизма рождения $K\bar{K}$ -пар с определенным изоспином в S-волне без аномальных порогов Ландау [4, 14], в частности, за счет $a_0^0(980) - f_0(980)$ смешивания [2, 4],

$$\simeq \sqrt{2(m_{K^0} - m_{K^+})/m_{K^0}} \approx 0.127;$$
 (23)

порядок нарушения симметрии в амплитуде распада $\eta(1405) \rightarrow f_0(980)\pi^0 \rightarrow \pi^+\pi^-\pi^0$ за счет логариф-мических треугольных сингулярностей во вкладах

Письма в ЖЭТФ том 107 вып. 5-6 2018

 $(K^*\bar{K} + \bar{K}^*K)$ -промежуточных состояний в области $\sqrt{s_2}$ между $K^0\bar{K}^0$ - и K^+K^- -порогами [10]:

$$\simeq \left| \ln \left| \frac{\Gamma_{K^*}/2}{\sqrt{m_{K^0}^2 - m_{K^+}^2 + \Gamma_{K^*}^2/4}} \right| \right| \approx 1 \qquad (24)$$

(такую оценку для нескомпенсированного вклада между заряженными и нейтральными промежуточными состояниями в треугольной диаграмме, согласующуюся с рис. 6а, можно получить, например, из формулы (10), заменив в ней в точке сингулярности $m_{K^*}^2$ на $m_{K^*}^2 - im_{K^*}\Gamma_{K^*}$).

Во всех случаях аномального нарушения изотопической симметрии, соответствующих формулам (23) и (24), фаза нарушающей симметрию амплитуды меняется в области между K^+K^- - и $K^0\bar{K}^0$ -порогами приблизительно на 90° [4, 10, 14].

Работа частично поддержана грантом РФФИ # 16-02-00065 и грантом Президиума Российской академии наук # 0314-2015-0011.

- M. Ablikim, M. N. Achasov, O. Albayrak et al. (BESIII Collab.), Phys. Rev. Lett. **108**, 182001 (2012).
- N. N. Achasov, S. A. Devyanin, and G. N. Shestakov, Phys. Lett. B 88, 367 (1979).
- H. H. Ачасов, С. А. Девянин, Г. Н. Шестаков, ЯФ
 33, 1337 (1981) [N. N. Achasov, S. A. Devyanin, and G. N. Shestakov, Sov. J. Nucl. Phys. 33, 715 (1981)].
- N. N. Achasov and G. N. Shestakov, Nucl. Part. Phys. Proc. 287–288, 89 (2017).
- C. Patrignani, K. Agashe, G. Aielli, et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016), and 2017 update.
- J. J. Wu, X. H. Liu, Q. Zhao, and B. S. Zou, Phys. Rev. Lett. 108, 081803 (2012).
- F. Aceti, W. H. Liang, E. Oset, J. J. Wu, and B. S. Zou, Phys. Rev. D 86, 114007 (2012).
- X. G. Wu, J. J. Wu, Q. Zhao, and B. S. Zou, Phys. Rev. D 87, 014023 (2013).
- F. Aceti, J.M. Dias, and E. Oset, Eur. Phys. J. A 51, 48 (2015).
- N. N. Achasov, A. A. Kozhevnikov, and G. N. Shestakov, Phys. Rev. D 92, 036003 (2015).
- N. N. Achasov and A. A. Kozhevnikov, Z. Phys. C 48, 121 (1990).
- H. H. Ачасов, А. А. Кожевников, ЯФ 56, 191 (1993) [N. N. Achasov and A. A. Kozhevnikov, Phys. Atom. Nucl. 56, 1261 (1993)].
- N. N. Achasov and A. A. Kozhevnikov, Phys. Rev. D 49, 275 (1994).
- N. N. Achasov, A. A. Kozhevnikov, and G. N. Shestakov, Phys. Rev. D 93, 114027 (2016).