Структура энергетических потоков в топологических трехмерных диссипативных солитонах¹⁾

C. B. Федоров⁺, H. H. Розанов^{+*#2)}, H. A. Веретенов^{+*}

+ Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики (Университет ИТМО), 197101 Санкт-Петербург, Россия

*Государственный оптический институт им. С.И. Вавилова, 199053 Санкт-Петербург, Россия

[#]Физико-технический институт им. А.Ф. Иоффе, 194021 Санкт-Петербург, Россия

Поступила в редакцию 9 января 2018 г.

После переработки 12 января 2018 г.

На примере трехмерных диссипативных оптических солитонов с одной незамкнутой и одной замкнутой линиями дислокаций волнового фронта выявлена внутренняя структура топологических диссипативных солитонов, проявляющаяся в наличии особых точек, линий и поверхностей в поле потоков электромагнитной энергии (вектора Пойнтинга). Сохранение топологических признаков таких солитонов, которые могут формироваться в однородной лазерной среде с насыщающимися усилением и поглощением или в лазерах с достаточно большими продольным и поперечными размерами, предоставляет дополнительные возможности для информационных приложений.

DOI: 10.7868/S0370274X18050132

Существование топологических солитонов со сложной внутренней структурой, таких как узловые, было предсказано Л.Д. Фаддеевым [1] применительно к консервативным системам. Дальнейшие исследования выявили существование подобных многокомпонентных солитонов в широком круге консервативных физических систем - различных типах конденсата Бозе-Эйнштейна, в плазме, жидких кристаллах и сверхпроводимости [2-6]. Эксперименты с топологическими солитонами пока немногочисленны; в дополнение к цитированным в [7–9], укажем анализ структур в сверхпроводящем ³Не во вращающемся сосуде [10], хотя эта система и не обладает пространственной однородностью. В то же время диссипативные солитоны, локализация поля в которых обеспечивается балансом притока и оттока энергии или вещества, отличаются от консервативных солитонов значительно большей устойчивостью и разнообразием структур. При этом диссипативные солитоны более просто могут быть сформированы в нелинейно-оптических и лазерных системах, перспективных для информационных приложений [7]. Нетривиальные диссипативные топологические трехмерные солитоны, включая узловые, недавно были найдены численным моделированием в [8,9]. Так, в [9] обнаружен новый класс топологических диссипативных оптических солитонов с несколькими замкнутыми и незамкнутыми вихревыми линиями (на которых поле обращается в нуль), что отвечает топологии тэнглов (запутанных клубков) [11]. Задачей настоящего сообщения служит выявление внутренней структуры таких солитонов на основании анализа потоков энергии, играющих принципиальную роль в особенности для диссипативных солитонов.

Моделью служит однородная однокомпонентная среда с безынерционным насыщением усиления и поглощения или же лазер с быстро насыщающимся поглощением, обладающий достаточно большими размерами. Излучение считаем квазимонохроматическим с поляризацией, близкой к линейной, распространяющимся преимущественно вдоль оси z с угловой расходимостью, близкой к дифракционной. Уравнение для медленно меняющейся огибающей поля E в безразмерных единицах имеет вид [7–9]:

$$\frac{\partial E}{\partial z} = \left[(i + d_{\perp}) \nabla_{\perp}^2 + (i + d_{\parallel}) \frac{\partial^2}{\partial \tau^2} \right] E + f_{nl}(|E|^2) E.$$
(1)

Здесь $\nabla_{\perp}^2 = \partial^2/\partial x^2 + \partial^2/\partial y^2$ – поперечный лапласиан, x и y– поперечные координаты, $\tau = t - z/v_g$ – время в сопровождающей системе координат, движущейся вдоль оси zс групповой скоростью v_g, t –

 $^{^{1)}\}mathrm{Cm.}$ доп.
материалы к данной статье на сайте нашего журнала www.jetpletters.ac.ru

²⁾e-mail: nnrosanov@mail.ru

время в лабораторной системе координат. "Коэффициенты диффузии" d_{\parallel} и d_{\perp} , $0 < d_{\perp,\parallel} \ll 1$, описывают ширину спектрального контура (d_{\parallel}) и дихроизм – угловую селективность (d_{\perp}) линейного усиления/поглощения. Наконец, отражающая баланс потерь и усиления функция интенсивности излучения $I = |E|^2$,

$$f_{nl}(I) = -1 - \frac{a_0}{1+I} + \frac{g_0}{1+I/\beta},$$
(2)

отвечает двухуровневым схемам для усиления и поглощения при нулевой частотной расстройке. В (2) g_0 и a_0 – коэффициенты ненасыщенного усиления и поглощения, а β – отношение интенсивностей насыщения усиления и поглощения. При равенстве коэффициентов диффузии $d_{\perp} = d_{\parallel} \equiv d$ в (1) фигурирует единый трехмерный лапласиан $\nabla_{\mathbf{r}}^2 = \partial^2/\partial x^2 +$ $+ \partial^2/\partial y^2 + \partial^2/\partial \tau^2$ в изотропном трехмерном пространстве $\mathbf{r} = (x, y, \tau)$:

$$\frac{\partial E}{\partial z} = (i+d)\nabla_{\mathbf{r}}^2 E + f_{nl}(|E|^2)E.$$
 (3)

Потоки электромагнитной энергии в принятом квазиоптическом приближении определяются вектором Пойнтинга $\mathbf{S} = \operatorname{Im}[E^* \nabla E] = I \nabla \Phi$, где $\Phi =$ $= \arg E - \varphi$ аза поля; здесь и далее опускаем нижний индекс у оператора $\nabla_{\mathbf{r}}$. Линии потока энергии, касательная к которым в каждой точке совпадает по направлению с вектором \mathbf{S} , при фиксированном z определяются уравнениями $dx/S_x = dy/S_y = d\tau/S_\tau$. Особые элементы этих динамических уравнений определяются условиями $S_x(x, y, \tau) = 0, S_y(x, y, \tau) = 0,$ $S_{\tau}(x, y, \tau) = 0$. Для фундаментальных солитонов, интенсивность I которых отлична от нуля на любых конечных расстояниях от центральной области, особенности возникают лишь при нулевом градиенте фазы, $\nabla \Phi = 0$ [7, 12]. Последнее равенство в общем случае удовлетворяется в изолированных точках пространства г. В отличие от них, для топологических солитонов особенности возникают и при условии нулевой интенсивности, I = 0, или же $\operatorname{Re} E = \operatorname{Im} E = 0$ (в общем случае вихревые линии в пространстве r).

На рис. 1 показаны области локализации (a), (c), (e), (f) и вихревые линии (b), (d), (g) солитонов следующих типов: (a), (b) – "прецессон" с единственной искривленной незамкнутой вихревой линией [8], (c), (d) – осесимметричное и (e) – асимметричное "яблоко" с прямой незамкнутой и замкнутой вихревыми линиями [9], (f), (g) – асимметричное "яблоко" с искривленной незамкнутой вихревой линией. В последней структуре, полученной нами в определенной области параметров – "штопорном" солитоне, – про-

Письма в ЖЭТФ том 107 вып. 5-6 2018

исходит нелинейная стабилизация изгибной неустойчивости незамкнутой вихревой линии, причем эта линия непрерывно совершает "штопорные" движения [13].

Рис. 1. (Цветной онлайн) Поверхности изоинтенсивности рассматриваемых солитонов по уровню $I/I_{\text{max}} =$ = 0.05 на (a), (c), (e), (f) и 0.15 на (b), (d), (g). Шкала внизу слева характеризует фазу поля на поверхности постоянной интенсивности. $\beta = 10, a_0 = 2, g_0 = 2.11$ (c, d, e), 2.127 (f, g), 2.135 (a, b), d = 0.06 (a–d), 0.05 (f, g) и $d_{\perp} = 0.05, d_{\parallel} = 0.032$ (e)

Рис. 2. (Цветной онлайн) Области источников ($\nabla \cdot \mathbf{S} >$ > 0, красный цвет, знак +) и стоков ($\nabla \cdot \mathbf{S} < 0$ – синий цвет) энергии для осесимметричного (а) и асимметричного (b) "яблока", и "прецессона" (c), (d). Замкнутые траектории на (a) и/или (c): вихревые линии 1, седловой 2, отталкивающие, неустойчивые 3, 4, и притягивающий, устойчивый 5 предельные линии. (d) – вихревая линия 1, предельные линии 2–4 и спираль на сепаратрисной поверхности, разделяющей области притяжения вихревой линии и отдаляющихся от нее линий потока энергии. Стрелки показывают направление тангенциальной составляющей потока энергии вблизи линии 1. Параметры те же, что на рис. 1

Рис. 3. (Цветной онлайн) Особые элементы фазовой плоскости (а) и "рядовые" линии потоков энергии (b), демонстрирующие характер особых элементов для осесимметричного "яблока". Вертикальная пунктирная прямая $\rho = 0$ указывает вихревую линию. На ней расположены 3 вырожденные особые точки: устойчивый узел 6 и два седла 7, 8. Близкие сепаратрисы 9, выходящие из неустойчивого предельного цикла 10 и попадающие в седла 2, 4 и 7, разделяют ограниченную область с траекториями, локализованными внутри солитона, и область траекторий, уходящих на периферию. 1 – устойчивый фокус, 5 – устойчивый узел. Неограниченная сепаратриса 11 отделяет траектории, уходящие на периферию вблизи вихревой линии, от приближающихся к "притягивающей" линии 12

Локальной характеристикой структуры солитонов служит знак дивергенции потока энергии: для источников поля $\nabla \cdot \mathbf{S} > 0$, а для стоков $\nabla \cdot \mathbf{S} < 0$. Как видно из рис. 2, границы раздела областей источников и стоков энергии тороидальны. Для "прецессона" источники расположены внутри единственной области – полом тороиде, а для "яблока" – в двух полых тороидах.

Более полно внутренняя структура солитонов характеризуется топологией линий потока энергии (нелокальные характеристики). Ориентацию линий определяем по знаку их (единичного) топологического заряда m (при движении вдоль линии или в малой окрестности вокруг нее в направлении ориентации фаза поля возрастает). В случае осесимметричного "яблока" поле представляется как $E = A(\rho, \tau') \exp(im\varphi + iq_z z)$, где $\tau' = \tau - \nu_\tau z$, $\rho = (x^2 + y^2)^{1/2}$, $m = \pm 1$ (штрих далее опускаем, ν_τ и q_z – постоянные). Тогда фазовое пространство (ρ, τ) потока имеют вид

$$\frac{d\rho}{dl} = S_{\rho}(\rho, \tau), \quad \frac{d\tau}{dl} = S_{\tau}(\rho, \tau). \tag{4}$$

Эволюционная переменная l имеет смысл длины линии от некоторой произвольной точки со знаком + или — в зависимости от того, совпадает ли движение вдоль линии с ее ориентацией. Структуру фазовой плоскости уравнений (4) определяют особые точки, в которых $S_{\rho} = S_{\tau} = 0$, сепаратрисы седел и предельные циклы (замкнутые линии) [14].

На рис. За показаны 5 изолированных особых точек: "устойчивый" (по отношению к увеличению длины l) фокус 1, устойчивый и неустойчивый узлы 5 и 3, седла 2 и 4, их сепаратрисы и единственный "неустойчивый" предельный цикл 10. Особого рассмотрения требует сплошная линия особых точек $\rho = 0$, совпадающая с незамкнутой вихревой линией. В ее окрестности амплитуда поля A разлагается в ряд по нечетным степеням радиуса: $A = \rho f(\tau) - \rho^3 g(\tau) + \ldots$ В низшем по ρ порядке

$$S_{\rho} = -\rho^3 F_{\rho}(\tau), \ S_{\tau} = -\rho^2 F_{\tau}(\tau).$$
 (5)

В области локализации поля функция $F_{\rho}(\tau) = 2 \operatorname{Im}(f^*g) > 0$, а $F_{\tau}(\tau) = \operatorname{Im}(f^*df/d\tau)$ трижды меняет знак, $F_{\tau}(\tau_n) = 0$, n = 1, 2, 3. В окрестности *n*-го нуля положим $F_{\rho}(\tau) = F_{\rho}(\tau_n)$, $F_{\tau}(\tau) = F'_{\tau}(\tau_n)(\tau - \tau_n)$. Тогда для линии с начальными значениями (ρ_0, τ_0)

$$\rho(\tau) = \rho_0 \left| \frac{\tau - \tau_n}{\tau_0 - \tau_n} \right|^{F_\rho(\tau_n)/F'_\tau(\tau_n)}.$$
 (6)

Письма в ЖЭТФ том 107 вып. 5-6 2018

Рис. 4. (Цветной онлайн) Преобразование фазовой полуплоскости рис. За в 3D-фазовое пространство потоков энергии (a, b) за счет вращения элементов (a) вокруг оси τ . В разрезе (b) показаны особые поверхности, разделяющие линии потока энергии с качественно различающимся поведением. Они получены вращением вокруг оси τ особых линий рис. За: предельного цикла 10 и сепаратрис, как приходящих в седла 2, 4, 7 из предельного цикла, так и соединяющих седла 3, 8, седла и узлы 2, 6, 2, 5, 3, 4, 4, 5, и уходящих на периферию сепаратрисы 11 и линии 12. След вращения предельного цикла образует полый тороид, а след сепаратрис формируют цилиндрические поверхности (b). Линии 1 и 2 – общего положения, иллюстрируют сильную связь локализованных и уходящих на периферию потоков энергии

Из (6) следует, что при $F'_{\tau}(\tau_n) > 0$ линия входит в вырожденную особую точку ($\rho(\tau) \to 0$ при $\tau \to \tau_n$), что отвечает на рис. За устойчивому узлу 6. Если $F'_{\tau}(\tau_n) < 0$, то при $\tau \to \tau_n$ линия удаляется от особой точки, что реализуется для вырожденных седел 7 и 8 на рис. За.

Еще одной представленной на рис. За особенностью фазовой плоскости являются исходящие из неустойчивого предельного цикла и входящие в седла (2), (4) и (7) сепаратрисы. Они, вместе с вихревой линией и не показанной на рис. За линией, исходящей из неустойчивого предельного цикла и разделяющей траектории, приближающиеся при $l \to +\infty$ либо к вихревой линии при $\tau \to +\infty$, либо к линии 12, полностью определяют разбиение фазовой плоскости на ячейки с качественно различающимся поведением линий потока энергии.

Использование осевой симметрии солитона-"яблока" с привлечением дополнительного к (4) уравнения для угловой координаты φ , $d\varphi/dl = \rho^{-2}I(\rho, \tau)$, позволяет получить и трехмерное фазовое пространство потоков энергии. Как показано на рис. 4, при вращении элементов (а) вокруг оси τ след 2D-предельного цикла образует полый тороид, а сепаратрисы, исходящие из предельного цикла, фор-

мируют цилиндрические поверхности (b). Линии 1 и 2 (b) – общего положения, они иллюстрируют сильную связь локализованных и уходящих на периферию потоков энергии. След от вращения изолированных особых точек у "яблока" дает 5 замкнутых линий (колец) (см. рис. 4b и 2a). Для "прецессона" часть таких замкнутых линий (4) приведена на рис. 2c. На указанной на рис. 2d сепаратрисной поверхности "прецессона" имеются три замкнутых (предельных, 3D-аналоги 2D-предельных циклов) линии (2, 3 и 4 на рис. 2c), отвечающие трем вырожденным особым точкам на вихревой линии. Центральная из них совпадает с центром симметрии инверсии поля. Вблизи вихревой линии тангенциальная составляющая потока энергии направлена так же, как для "яблока". Вихревую линию окружает поверхность с неустойчивыми замкнутыми траекториями 3 и 4 на рис. 2d, которая ограничивает область траекторий, уходящих на периферию вблизи незамкнутой вихревой линии. В центре поверхности, вблизи линии "седловой" замкнутой линии 2, шаг спиральных линий потока уменьшается до нуля.

Таким образом, в данной работе найден новый тип устойчивого топологического лазерного солитона с необычным "штопорным" движением вихревой линии (рис. 1f, g, рис. 2b и анимация [13]). Выявлена внутренняя структура солитонов с одной незамкнутой вихревой линией. Незамкнутая вихревая линия является аттрактором: все линии потока энергии внутри окружающей эту вихревую линию сепаратрисной поверхности приближаются к вихревой линии при $l \to \infty$. По-видимому, наличие трех вырожденных точек на незамкнутой вихревой линии служит общим свойством подобных устойчивых солитонов. Если представить структуру с единственной вырожденной точкой на незамкнутой вихревой линии, то она будет неустойчивой: исходящие из центра потоки не скомпенсированы, что приведет к расширению структуры.

В отсутствие замкнутых вихревых линий потоки энергии разделяются поверхностью типа искривленного цилиндра на наматывающиеся на вихревую линию и уходящие на периферию вне ее окрестности. При наличии дополнительной замкнутой вихревой линии ("яблоко") в фазовом пространстве потоков энергии возникают дополнительные разделяющие поверхности, как замкнутые тороиды, так и незамкнутые, уходящие на периферию солитона. Наличие линий потока энергии, закручивающихся вблизи и незамкнутой, и замкнутой вихревых линий, подчеркивает их сильную связь, обеспечивающую повышенную устойчивость исследуемых топологических солитонов.

Результаты работы получены с использованием вычислительных ресурсов суперкомпьютерного центра Санкт-Петербургского политехнического университета Петра Великого (www.scc.spbstu.ru). Исследование отвечает плану работ по гранту РНФ 18-12-00075.

- L. D. Faddeev, Quantization of solitons, Princeton preprint IAS-75-QS70, Institute for Advanced Study, Princeton (1975).
- 2. L. D. Faddeev and A. J. Niemi, Nature 387, 58 (1997).
- L. D. Faddeev and A. J. Niemi, Phys. Rev. Lett. 85, 3416 (2000).
- 4. E. Babaev, Phys. Rev. Lett. 88, 177002 (2002).
- J. Garaud, J. Carlstrom, and E. Babaev, Phys. Rev. Lett. 107, 197001 (2011).
- Y.-C. Zhang, Z.-W. Zhou, B.A. Malomed, and H. Pu, Phys. Rev. Lett. **115**, 253902 (2015).
- 7. Н. Н. Розанов, Диссипативные оптические солитоны. От микро- к нано- и атто-, Физматлит (2011).
- N.A. Veretenov, N.N. Rosanov, and S.V. Fedorov, Phys. Rev. Lett. **117**, 183901 (2016).
- N.A. Veretenov, S.V. Fedorov, and N.N. Rosanov, Phys. Rev. Lett. **119**, 263901 (2017).
- V. M. H. Ruutu, Ü. Parts, J. H. Koivuniemi, M. Krusius, E. V. Thuneberg, and G. E. Volovik, Pis'ma v ZhETF 60, 659 (1994).
- A. Kawauchi, A Survey of Knot Theory, Birkhauser Verlag (1996).
- Н. А. Калитеевский, Н. Н. Розанов, С. В. Федоров, Опт. спектроск. 85, 1394 (1998) [N. A. Kaliteevskii, N. N. Rosanov, and S. V. Fedorov, Opt. Spectrosc. 85, 485 (1998)].
- См. Дополнительный материал с анимацией формирования и установления линии нулей у "штопорного солитона" – асимметричного "яблока" по адресу www.jetpletters.ac.ru; d = 0.05, g₀ = 2.127
- А. А. Андронов, Е. А. Леонтович, И. И. Гордон, И. И. Майер, Качественная теория динамических систем второго порядка, Наука (1966).