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Electromagnetic metamaterials are the artificial
composites structured on subwavelength level, and their
macroscopic characteristics are defined by the design
of structural elements (meta-atoms) and architecture of
the unit cell. Tunable structures are of particular inter-
est as they can increase functionality and/or broaden
the bandwidth of metamaterial devices [1, 2], and re-
configurable liquid metamaterials can provide a basis
for the design of highly tunable nanophotonic devices
[3]. The plasmonic negative-index liquid metamaterials
were first suggested in the papers [4, 5]. Later on, the
new kind of liquid metamaterial called liquid metacrys-
tal (LMC) was theoretically studied in [6].

It was supposed in [6] that such a material may be
realized as an array of resonant micro- or nanoparticles
(meta-atoms) with anisotropic polarizability suspended
in viscous medium (e.g. liquid or gel). The external dc
electric field applied to LMC aligns meta-atoms along
one axis that imparts the anisotropic properties to the
metamaterial. The electromagnetic waves propagation
in LMC strongly depends on the relative orientation
of the anisotropy axis and the wavevector, that makes
it possible to change the effective refraction index of
LMC simply by changing the orientation of dc electric
field. The meta-atoms can also be reoriented by means
of high-frequency electromagnetic field that results in
strong nonlinearity of LMC. These properties of LMC
were predicted in [6, 7] and basically demonstrated in
experiment [8].

In this work we report the unusual type of LMC
nonlinearity which is caused by the resonant interac-
tion between the individual meta-atoms and linearly
polarized amplitude-modulated electromagnetic wave.
We consider the resonant interaction of the mechan-

ical angular oscillations of elongated meta-atom with
the modulated electromagnetic wave when the modula-
tion frequency is close to the doubled mechanical reso-
nance frequency. In dc or ac electric field a meta-atom
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with anisotropic polarizability orients along the field di-
rection. At the same time, being deviated from the di-
rection of dc external control field, the meta-atom will
experience oscillations near this equilibrium state.

It is shown (See Supplemental Material) that the
squared eigenfrequency of angular oscillations depends
linearly on the squared static field strength and inten-
sity of electromagnetic wave and can be represented as
follows:

Ω2 = F0E
2
0 + F∼ReG(ω)|E∼|

2. (1)

Here E0 (E∼) is the external dc (ac) electric field,
G(ω) = ω2

0/(ω
2
0 − ω2 + iγω) is the function describing

a resonance response of the meta-atoms, ω0 is the cor-
responding eigenfrequency, γ is the damping coefficient,
and F0 (F∼) is the static (high frequency) form-factor
depending on the shape and size of the meta-atom.

The intensity of amplitude-modulated wave changes
in time as I = I0(1 + ν0 cosΩMt) (0 < ν0 < 1), and the
eigenfrequency of mechanical oscillations of meta-atoms
becomes also temporally modulated

Ω2 = Ω2
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2
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0).

In this case, the dynamics of the angular deviation θ
of meta-atom dipole moment from the equilibrium is de-
scribed by nonlinear oscillator equation with the eigen-
frequency explicitely depending on time:

d2θ

dt2
+ η

dθ

dt
+

1

2
Ω2

0 (1 + ν cosΩMt) sin 2θ = 0, (3)

where η is the damping coefficient of mechanical os-
cillations of the meta-atom. For small deviations when
sin 2θ ≈ 2θ Eq. (3) is actually Mathieu equation.

It is well-known that Mathieu equation describes the
so-called parametric instability: if the modulation fre-
quency is approximately twice the eigen frequency of
the oscillator, ΩM = 2Ω0(1 + δ) (δ ≪ 1), the oscillator
phase-locks to the parametric variation and absorbs en-
ergy that leads to the exponential growth of the oscilla-
tion amplitude, which saturates only at nonlinear stage.
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The typical temporal dependences of θ(t) during the in-
stability growth and saturation are shown in Fig. 1a. On

Fig. 1. (Color online) (a) – Time dependence of the angu-

lar deviation θ of the meta-atom from its equlibrium. (b) –

The amplitude |θ|max of the angular meta-atom’s devia-

tion from its equlibrium as a function of the modulation

amplitude; the corresponding dependencies in stochastic

regime are shown with red dashed curves. The numerical

results (thick lines) are compared to the theoretical pre-

dictions (thin black lines)

the other hand, direct numerical evaluation of Eq. (3)
demonstrates that sometimes no stationary state exists
and the angular dynamics of the meta-atom becomes
chaotic. The transition from dynamical to stochastic
regime is clearly seen in Fig. 1b, which shows the depen-
dence of the angular deflection amplitude, |θ|max on the
modulation parameter ν. The smooth functions that are
rather close to the theoretical predictions change into
highly irregular dependencies, and the chaotic regime is
established at |θ|max ≈ 0.64.

The parametric instability changes the mean orien-
tation of the meta-atoms, thus leading to modification
of the dielectric tensor of the medium. As in the case
of conventional liquid ctystals, this orientational non-
linearity is strong and slow. The nonlinear effects are
particularly pronounced when the LMC constitutes a
hyperbolic medium in which the longitudinal ε‖ and
transverse ε⊥ components of permittivity tensor have
different signs, ε‖ε⊥ < 0.

An important phenomenon called “topological tran-
sition” that manifests itself as the change of topology of
the isofrequency surface can appear due to the change of
the parameters of anisotropic metamaterial. Parametric
oscillations of meta-atoms also can lead to such topo-
logical transition. Depending on the oscillations regime,
different scenarios may be realized. Namely, hyperbolic
isofrequency surface may become elliptic (in stochastic
regime) or may oscillate between elliptic and hyperbolic

(in nonlinear saturation regime). In the latter case ef-
fective dielectric constants become

εeff

‖ = ε
(0)
‖ − (ε
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⊥ ) sin2 θ,
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(4)

where ε
(0)
‖ and ε

(0)
⊥ are the permittivity components

found under the assumption of perfect ordering. Phase-
coherent angular motion of the meta-atoms results in
oscillation of the anisotropy factor with the frequency
ΩM ≈ 2Ω0, that is slow on the optical time-scale 2π/ω.
For small θ we obtain the time-dependent expressions
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If we have, for example, ε
(0)
‖ = −0.5, ε

(0)
⊥ = 2, Ast = 0.3,

then approximately half of the time the LMC is a hy-
perbolic medium and the other half it is elliptic one.
When εeff

‖ > 0 the medium is transparent, then εeff

‖ be-
comes negative, and LMC is opaque for the optical wave
polarized along the z-axis. In this case the effect of os-
cillating topology can be realized only in thin (relative
to the skin depth) layer of the metamaterial.

Thus, the instability of mechanical oscillations of
meta-atoms in LMC in the field of amplitude-modulated
electromagnetic wave eventually leads either to regular
oscillatory regime that may result in multiple topologi-
cal transitions or to chaotic regime with the meta-atoms’
disordering and effective termalization which also can
modify the topology of isofrequency surface.
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