Структура и свойства новых фаз высокого давления Fe₇N₃

П. Н. Гаврюшкин^{+*1)}, Н. Сагатов⁺, З. И. Попов[#], А. Бехтенова^{+*}, Т. М. Инербаев[×], К. Д. Литасов^{+*}

+Институт геологии и минералогии им. В.С. Соболева СО РАН, 630090 Новосибирск, Россия

*Новосибирский государственный университет, 630090 Новосибирск, Россия

#Национальный университет науки и технологий МИСИС, 119049 Москва, Россия

 $^{\times} Евразийский национальный университет Л.Н. Гумилева, 010008 Астана, Казахстан$

Поступила в редакцию 19 января 2018 г. После переработки 9 февраля 2018 г.

При помощи *ab initio* расчетов в рамках теории функционала электронной плотности (DFT) проведено исследование структуры и свойств высокобарических фаз нитридов железа состава Fe₇N₃ в интервале давлений 50–150 ГПа. С помощью алгоритмов предсказания структур (USPEX) найдена новая фаза *Amm*2-Fe₇N₃ наиболее энергетически выгодная в интервале давлений 43–128 ГПа. В отношении другой высокобарической фазы, β -Fe₇N₃, получены термодинамические аргументы, подтверждающие ее изоструктурность аналогичной фазе карбида железа. Для всех стабильных при высоких давлениях модификаций ε -, β -, *Amm*2-Fe₇N₃ рассчитаны упругие свойства.

DOI: 10.7868/S0370274X18060103

Введение. Интерес к фазам высокого давления нитридов железа, как потенциальным фазам ядра и мантии Земли, обусловлен их находками в сверхглубинных алмазах [1, 2] и повышенными концентрациями азота в некоторых железных метеоритах, а также устойчивостью нитридов железа по отношению к карбидам в условиях избытка азота и углерода [3], что предполагает возможность вытеснения углерода азотом из соединений с железом [4].

В структурах нитридов железа, кристаллизующихся при атмосферном давлении, атомы железа располагаются по принципу плотнейшей упаковки, в которой атомы азота заполняют часть октаэдрических пустот. Количество азота может быть постоянным, как в фазе γ' -Fe₄N, или переменным – как в ε -Fe_xN.

В структуре γ' -Fe₄N атомы железа располагаются по принципу плотнейшей кубической упаковки (γ -Fe), в которой атомы азота занимают 1/4 октаэдрических пустот. В структурах ε -Fe₃N_x укладка атомов железа плотнейшая гексагональная (ε -Fe), атомы азота располагаются в октаэдрических пустотах, а их количество x может варьировать в пределах от 1 до 1.5 для Fe₃N_x. При температурах выше 770 К распределение атомов азота беспорядочное, при понижении температуры наблюдается упорядочение [5–7]. В наших предыдущих работах были проведены теоретическое и экспериментальное исследования устойчивости и свойств ε -фаз с различным содержанием азота в широком диапазоне давлений [8– 10]. Недавние экспериментальные результаты, полученные С. Минобе с соавторами [11], показали, что ε -Fe₇N₃ при давлении порядка 41 ГПа и температуре 1000 К превращается в новую гексагональную фазу, β -Fe₇N₃. Для этой фазы удалось определить пространственную группу симметрии ($P6_3mc$) и параметры решетки. Экспериментального определения координат атомов не проводилось, однако было сделано предположение об изоструктурности β -Fe₇N₃ гексагональному карбиду железа Fe₇C₃.

В настоящей работе представлены результаты термодинамической проверки этого предположения, а также результаты теоретического поиска новых фаз Fe₇N₃, устойчивых при высоких давлениях.

Методика. Детали расчетов. Расчет энергии основного состояния и упругих свойств проводился в рамках теории функционала плотности, программный пакет VASP 5.3 (Vienna Ab-initio Simulation Package) [12–14] с использованием базиса плоских волн, PAW формализма [15] и обобщенного градиентного приближения (GGA) в виде обменнокорреляционного функционала PBE (Perdew–Burke– Ernzerhof) [16]. Энергия обрезания плоских волн ограничивалась 700 эВ. Разбиение зоны Бриллюэна происходило по схеме Монкхорста–Пака [17] с плотностью k-точек 0.2 Å⁻¹.

¹⁾e-mail: gavryushkin@igm.nsc.ru, p.gavryushkin@gmail.com

Фаза	Давление	Простр.	Параметры решетки (Å, гр.)			Координаты атомов			
	$(\Gamma\Pi a)$	группа				Атом	x	y	z
ε -Fe ₇ N ₃	0	$P3_{1}2$	a = 4.707	b = 4.707	c = 30.054	Fe1	-0.008	0.333	-0.037
		(#149)	$\alpha = 90.00$	$\beta=90.00$	$\gamma = 120.00$	Fe2	-0.008	0.333	0.109
						Fe3	-0.007	0.333	0.248
						Fe4	0.004	0.333	0.395
						Fe5	0.006	0.342	0.535
						Fe6	-0.005	0.333	0.678
						Fe7	-0.008	0.333	0.824
						N1	0.000	0.000	-0.071
						N2	0.000	0.000	0.214
						N3	0.000	0.000	0.356
						N4	0.000	0.000	0.500
						N5	0.333	0.667	-0.071
						N6	0.333	0.667	0.214
						N7	0.333	0.667	0.357
						N8	0.667	0.333	0.000
						N9	0.667	0.333	0.286
						N10	0.667	0.333	0.428
β -Fe ₇ N ₃	69.2	$P6_3mc$	a = 6.454	b = 6.454	c = 4.140	Fe1	0.3333	0.6667	0.0777
		(#186)	$\alpha=90.00$	$\beta=90.00$	$\gamma = 120.00$	Fe2	0.5443	0.4557	0.0808
						Fe3	0.1238	0.8762	0.235
						N1	0.8128	0.1872	0.329
Amm2-	100	Amm2	a = 2.360	b = 13.771	c = 4.489	Fe1	0.000	0.500	0.697
$\mathrm{Fe_7N_3}$		(#38)	$\alpha=90.00$	$\beta=90.00$	$\gamma=90.00$	Fe2	0.500	0.636	0.824
						Fe3	0.500	0.419	0.330
						Fe4	0.000	0.719	0.475
						N1	0.500	0.500	0.000
						N2	0.000	0.839	0.622

Таблица 1. Структурные данные фаз Fe₇N₃

Предсказание структур осуществлялось с помощью эволюционных алгоритмов, имплементированных в коде USPEX 9.3.9 [18-22], для двух формульных единиц и давления 100 ГПа. Размер поколения составлял 20 кристаллических структур, 60% из которых с самыми низкими энтальпиями служили основой для создания следующего поколения; 50% структур нового поколения генерировалось с помощью механизма наследственности, 20% – случайным образом, 20% – методом мягкой мутации, 10% – методом атомных перестановок (атомной пермутацией). Полученные структуры оптимизировались с помощью программного пакета VASP 5.3. При оптимизации учитывалось наличие магнитного момента на атомах железа. Оптимизация проводилась в пять этапов: на первых двух оптимизировались параметры решетки и координаты атомов, следующие три этапа включали в себя и оптимизацию координат атомов. На каждом следующем этапе увеличивалась плотность k-точек (0.16 Å⁻¹, 0.12 Å⁻¹, 0.10 Å⁻¹, 0.08 Å^{-1} , 0.06 Å^{-1}). Остальные параметры оптимизации аналогичны указанным выше.

Структурные модели. При создании структурной модели β-Fe₇N₃ была принята гипотеза об ее изоструктурности гексагональной фазе Fe₇C₃ [23], параметры решетки приравнивались к параметрам, измеренным в эксперименте при 69.2 ГПа [11]. Так как имеющиеся структурные данные относительно гексагональной фазы Fe₇C₃ не высокого качества, но имеются более качественные структурные данные по изоструктурному соединению Ni₇B₃, для создания структурной модели использовались координаты атомов Ni₇B₃ [24]. Для полученной модели β-Fe₇N₃ была проведена оптимизация объема, параметров решетки и координат атомов (табл. 1). При оптимизации β-Fe₇N₃ сохраняла свою гексагональную симметрию Р63mc. Однако небольшая деформация наблюдалась при давлениях меньше 10 ГПа, т.е. вне поля устойчивости β -Fe₇N₃.

Для ε -Fe₇N₃ структурная модель создавалась на основе суперячейки 1 * 1 * 7 ε -Fe со случайным распределением атомов азота по октаэдрическим позициям. При создании модели учитывалось фиксирующееся в экспериментах стремление атомов азота к равномерному распределению [6] (см. табл. 1).

Результаты и обсуждение. Изоструктурность β -Fe₇N₃ и Fe₇C₃. Рассчитанные зависимости энтальпии от давления для β - и ε -Fe₇N₃ воспроизводят переход от ε - к β -фазе при 68 ГПа и 0 К. В эксперименте аналогичный переход фиксируется при 41 ГПа и ~ 1000 K [11]. С учетом отрицательного наклона кривой фазового перехода, при 0 К этот переход произошел бы в области 50 ГПа. Соответствие теоретического и экспериментального давлений перехода от ε к β -фазе и устойчивость β -фазы при локальной оптимизации свидетельствует о корректности модели β -Fe₇N₃, построенной на основе гипотезы об ее изоструктурности гексагональному карбиду железа.

Новая структура Fe_7N_3 –Атт2. Проведенные расчеты по предсказанию структур выявили новую фазу, более энергетически выгодную по сравнению с β - и ε -фазами в интервале давлений 43–128 ГПа (рис. 1). Новая структура характеризуется груп-

Рис. 1. (Цветной онлайн) Зависимости энтальпий от давления для магнитных фаз
 $\beta\mbox{-Fe}_7N_3,\,\varepsilon\mbox{-Fe}_7N_3,\,Amm2\mbox{-Fe}_7N_3,$ нормированные на энтальпию
 $\beta\mbox{-Fe}_7N_3$

пой симметрии Amm2, в силу чего была названа Amm2-Fe₇N₃. При 50 ГПа объем Amm2-фазы равен 78.5 Å³/ф.е и имеет промежуточное значение между объемом β -фазы (77.02 Å³/ф.е) и объемом ε -фазы (79.94 Å³/ф.е).

Модель Amm^2 -структуры показана на рис. 2а, структурные данные приведены в табл. 1. Проведем ее сравнение со структурами других фаз Fe₇N₃. Как отмечалось выше, низкобарические фазы нитридов железа γ' -Fe₄N и ε -Fe_xN характеризуются плотнейшей упаковкой атомов железа и октаэдрической координацией азота. В высокобарических β - и Amm^2 -фазах плотнейшая упаковка железа отсутствует. Азот сохраняет шестерную координацию, однако координационный полиэдр изменяет-

Письма в ЖЭТФ том 107 вып. 5-6 2018

ся. В структуре β -фазы это тригональная призма (рис. 2b). В *Amm*2-фазе часть атомов железа находится в тригонально-призматической координации (рис. 2a), другая часть – в тетрагонально призматической. Тетрагональная призма сильно деформирована: четыре атома железа удалены от центрального атома азота на расстояние 1.8–1.9 Å и располагаются в вершинах тетраэдра (эти тетраэдры показаны на рис. 2a), и еще два атома железа – на расстояние 2.1 Å (эти связи не отображены на рис. 2а для упрощения визуального восприятия структуры).

Согласно полученным результатам при низких температурах переход от ε - к β -фазе должен осуществляться через Amm2-фазу, которая устойчива в широком диапазоне давлений. Разница в энергиях Amm2- и β -фаз значительна, при 50 ГПа она достигает 0.6 эВ на формульную единицу. Можно предположить, что в силу более высокой симметрии β -фазы по сравнению с Amm2-фазой, энтропия последней будет расти быстрее чем энтропия первой при увеличении температуры. В результате, начиная с некоторой температуры, β -фаза станет энергетически выгодней Amm2-фазы. Это делает возможным при высоких температурах прямой переход от ε - к β -фазе, который и наблюдается в эксперименте [11].

Упругие свойства β -, ε - и Amm2-фаз. Чтобы оценить влияние магнитного момента на упругие свойства *β*-, *ε*- и *Amm*2-фаз, была определена зависимость объемов элементарных ячеек от давления для этих фаз, с учетом и без учета магнитного момента на атоме железа. Исчезновение магнитного момента связано с переходом из высокоспинового в низкоспиновое состояние [26], а так как ионный радиус железа зависит от его магнитного состояния [27], это отражается на изменении объема нитридов железа при одинаковом давлении. В точке, где разница объемов магнитной и немагнитной фазы стремится к нулю, будет происходить переход из магнитной в немагнитную фазу. Результаты расчетов показаны на рис. 3. Для всех исследованных фаз β -Fe₇N₃, ε -Fe₇N₃ и Amm2-Fe₇N₃ фиксируется разница объемов магнитной и немагнитной фаз. Различие объемов уменьшается с давлением и в некоторый момент исчезает. Для Атт2-фазы это происходит при $30 \,\Gamma\Pi a$, для β -Fe₇N₃ – при $100 \,\Gamma\Pi a$, для ε -Fe₇N₃ – при 130 ГПа.

На рис. 4 показано сравнение экспериментальной и теоретической зависимостей объема от давления для ε - и β -фаз. Для β -фазы при высоких давлениях разница объемов магнитной и немагнитной фаз несущественна и обе кривые корректно воспроизводят экспериментальные данные. В случае ε -фазы раз-

Рис. 2. (Цветной онлайн) Структурные модели Amm2-Fe₇N₃ (a) и β-Fe₇N₃ (b). Визуализация структур проводилась с помощью программы VESTA [25]

Рис. 3. (Цветной онлайн) Зависимость разницы объема магнитной и немагнитной фазы от давления для β -Fe₇N₃, Amm2-Fe₇N₃ и ε -Fe₇N₃

Рис. 4. (Цветной онлайн) Экспериментальная и теоретическая зависимости объемов от давления для ε- и β-фаз. Экспериментальные значения для ε-фазы [28], для β-фазы [11]

ница объемов существенна и магнитная фаза точнее воспроизводит экспериментальные данные, чем немагнитная.

Рассчитанные параметры уравнений состояния и упругие коэффициенты для ε -, β -, и Amm2-фаз приведены в табл. 2 и табл. 3. Сравнение с экспериментальными данными в табл. 2 показывает близкое соответствие значений рассчитанных теоретически и экспериментально измеренных модулей сжатия.

Таблица 2. Упругие свойства магнитной фазы $\varepsilon\text{-}$ Fe7N3 и немагнитных фаз $\beta\text{-}$ Fe7N3 и Amm2-Fe7N3

Фаза	P (ГПа)	Бирч–Мурнагхан		Источник	
		K_0 (ГПа)	K'		
ε -Fe ₇ N ₃	0–50	198.3	5.1	Данная работа	
ε -Fe ₇ N ₃	0 - 50	168	1	[27]	
β -Fe ₇ N ₃	50 - 150	271.2	4.6	Данная работа	
β -Fe ₇ N ₃	0 - 140	250 ± 11	-	[11]	
Amm2-Fe ₇ N ₃	50 - 150	309.2	4.423	Данная работа	

Заключение. Подводя итог, отметим перспективы дальнейших исследований. Обнаруженная Атт2-фаза, будучи энергетически наиболее выгодной в интервале давлений 43-128 ГПа, все-таки не была синтезирована в эксперименте и вместо нее образовывалась *β*-фаза. Однако, указанный интервал давлений относится к температуре 0 К, в эксперименте же синтез *β*-фазы наблюдался при температуре 1000 К. Нами было выдвинуто предположение, что различие теоретических и экспериментальных данных связано энтропийным фактором. В этом случае, β-фаза является высокотемпературной модификацией, а Атт2-фаза – низкотемпературной. Такое предположение объясняет экспериментальные данные, так как в силу существенного структурного различия *β*- и Amm2фазы, переход первой фазы во вторую требует существенного времени и в эксперименте, где проис-

Фаза	$C_{11} = C_{22}$	$C_{12} = C_{21}$	$C_{31} = C_{13}$	$C_{32} = C_{23}$	C ₃₃	$C_{44}{=}C_{55}$	C_{66}
β -Fe ₇ N ₃	868.7	506.4	505.3	509.1	894.2	28.8	182.7
Amm2-Fe ₇ N ₃	1042.3	347.6	354.1	535.8	1162.7	261.6	265.5

Таблица 3. Значения упругих коэффициентов (в ГПа) для немагнитных фаз $\beta\text{-Fer}N_3$ и $Amm2\text{-Fer}N_3$ при 100 ГПа

ходит быстра закалка образца, не реализуется. Для проверки этого предположения необходим расчет энергий Гиббса для ε-, β- и Amm2-фаз и определения полей их стабильности на РТ-диаграмме, что является целью наших ближайших исследований.

Авторы выражают признательность Информационно-вычислительному Центру Новосибирского Государственного Университета за предоставление доступа к ресурсам кластера. Исследования выполнены при финансовой поддержке Российского научного фонда, грант #17-17-01177.

- F. Kaminsky and R. Wirth, American Mineralogist: J. Earth and Planetary Materials 102, 1667 (2017).
- D. A. Zedgenizov and K. D. Litasov, American Mineralogist 102, 1769 (2017).
- К. Литасов, А. Шацкий, Э. Отани, Геохимия 54, 944 (2016).
- К. Д. Литасов, А. Ф. Шацкий, Геология и геофизика 57, 31 (2016).
- A. Leineweber, H. Jacobs, F. Hüning, H. Lueken, H. Schilderc, and W. Kockelmann, J. Alloys and Compounds 288, 79 (1999).
- 6. K. Jack, Acta Crystallographica 5, 404 (1952).
- R. Niewa, D. Rau, A. Wosylus, K. Meier, M. Hanfland, M. Wessel, R. Dronskowski, D. A. Dzivenko, R. Riedel, and U. Schwarz, Chemistry of Materials 21, 392 (2008).
- Z. I. Popov, K. D. Litasov, P. N. Gavryushkin, S. G. Ovchinnikov, and A. S. Fedorov, JETP Lett. 101, 371 (2015).
- K. D. Litasov, A. Shatskiy, D. S. Ponomarev, and P. N. Gavryushkin, J. Geophys. Res.: Solid Earth 122, 3574 (2017).
- К. Д. Литасова, А. Ф. Шацкий, С. Г. Овчинников, З. И. Попов, Д. С. Пономарев, Е. Отани, Письма в ЖЭТФ 98, 907 (2013).

- S. Minobe, Y. Nakajima, K. Hirose, and Y. Ohishi, Geophys. Res. Lett. 42, 5206 (2015).
- G. Kresse and J. Furthmuller, Comput. Mater. Science 6, 15 (1996).
- 13. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
- G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
- 15. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
- J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
- C. W. Glass, A. R. Oganov, and N. Hansen, Computer Phys. Commun. 175, 713 (2006).
- A. O. Lyakhov, A. R. Oganov, H. T. Stokes, and Q. Zhu, Computer Phys. Commun. 184, 1172 (2013).
- A. O. Lyakhov, A. R. Oganov, and M. Valle, Computer Phys. Commun. 181, 1623 (2010).
- A.R. Oganov and C.W. Glass, J. Chem. Phys. 124, 244704 (2006).
- A.R. Oganov, C.W. Glass, and S. Ono, Earth and Planetary Science Lett. 241, 95 (2006).
- F. Herbstein and J. Snyman, Inorganic Chemistry 3, 894 (1964).
- K. Hofmann, N. Kalyon, C. Kapfenberger, L.K. Lamontagne, S. Zarrini, R. Berger, R. Seshadri, and B. Albert, Inorganic Chemistry 54, 10873 (2015).
- K. Momma and F. Izumi, J. Appl. Crystallography 44, 1272 (2011).
- R. E. Cohen, I. I. Mazin, and D. G. Isaak, Science 275, 654 (1997).
- B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, and S. Alvarez, Dalton Transactions 0, 2832 (2008).
- J.F. Adler and Q. Williams, J. Geophys. Res.: Solid Earth **110**, B01203 (2005).