О влиянии диполь-дипольных взаимодействий на квантовую статистику поверхностных плазмонов в многочастичных спазерных системах

А. В. Шестериков⁺, М. Ю. Губин^{+*}, С. Н. Карпов⁺, А. В. Прохоров⁺¹)

⁺Владимирский государственный университет им. А.Г. и Н.Г. Столетовых, 600000 Владимир, Россия

*Московский педагогический государственный университет, 119991 Москва, Россия

Поступила в редакцию 26 февраля 2018 г.

Рассмотрена задача управления квантовой динамикой локализованных плазмонов в модели четырехчастичного спазера, состоящего из металлических наночастиц и полупроводниковых квантовых точек. Используя приближение среднего поля, определены условия для наблюдения устойчивых стационарных режимов формирования поверхностных плазмонов в представленной модели. Показано, что наличие сильных диполь-дипольных взаимодействий между металлическими наночастицами в составе спазерной системы приводит к значительному изменению квантовой статистики генерируемых на наночастицах плазмонов.

DOI: 10.7868/S0370274X1807010X

Прогресс последних лет в области нанотехнологий привел к возможности создания принципиально новых устройств для генерации [1] и детектирования [2] однофотонных состояний, в том числе, - с использованием высокодобротных микро и нанорезонаторов [3]. Эволюция подобных устройств привела к созданию нанолазера [4]. Для описания работы нанолазера потребовалось переформулировать известные условия лазерной генерации на случай субволновых масштабов [5]. В основу такого описания может быть положена модель локализованного спазера [6], в самом простом случае состоящего из связанных ближним полем полупроводниковой квантовой точки (КТ) и металлической наночастицы (НЧ): КТ выступает здесь в качестве эффективной накачки, НЧ служит нанорезонатором [7, 8]. В настоящее время как чисто субволновые [4], так и распределенные [9] спазерные системы (spaser-like system) реализованы на практике. Однако, для целей квантовой обработки информации [10] наибольший интерес связан с цепочечными моделями, состоящими из большого числа связанных НЧ и КТ [11], с возможностью последующей интеграции таких систем с помощью плазмонных волноводов [12] и управления ими [13]. В настоящей работе рассматриваются вопросы влияния диполь-дипольных взаимодействий на особенности квантовой статистики [14] генерируемых в многочастичном спазере плазмонов, а также возможности генерации одноплазмонных состояний [15] в цепочках линейных спазеров.

Рассмотрим систему из двух взаимодействующих посредством ближнего поля спазеров, состоящих из 2 KT и 2 HY (так называемый спазер 2×2), на рис. 1.

Рис. 1. Модель четыр
ехчастичного спазера 2 \times 2, состоящего из двух HЧ и дву
х KT

Энергия взаимодействия в системе зависит от ее геометрии, где характерными длинами выступают расстояние $r_{\rm NP}$ между соседними НЧ, расстояние $r_{\rm QD}$ между соседними КТ и расстояние $r_{\rm QN}$ в паре КТ–НЧ. Вектор $\mathbf{n} = \mathbf{r}/r$, составляющий угол θ с осью \mathbf{z} , определяет направление между центрами двух любых взаимодействующих частиц. Полагаем, что дипольные моменты $\hat{d}_{\rm QD}$ КТ и $\hat{d}_{\rm NP}$ НЧ коллинеарны друг другу и параллельны оси \mathbf{z} [6]. Поле $\hat{E}_{\rm NPi} = -\nabla \hat{A}_{\rm NPi}$ на расстоянии

¹⁾e-mail: avprokhorov33@mail.ru

rот i-ой сферической НЧ радиуса $a_{\rm NP}i$ может быть выражено через оператор вектор-потенциала $\hat{A}_{\rm NP}i = \sum_{n} \left(\frac{a_{\rm NP}i}{r}\right)^{n+1} Y_{nm}\left(\theta,\varphi\right) E_{nm}\left(\hat{c}_{i}+\hat{c}_{i}^{+}\right) {\bf e}_{\rm NP}i$ [7], где \hat{c}_{i} $\left(\hat{c}_{i}^{+}\right)$ представляют собой операторы уничтожения (рождения) плазмонной моды в квазистатическом приближении, $Y_{nm}\left(\theta,\varphi\right) = \sqrt{\frac{2n+1}{4\pi} \frac{(n-m)!}{(n+m)!}} P_{n}^{m}\left(\cos\theta\right) e^{im\varphi}$ являются сферическими функциями, выраженными через полиномы Лежандра, ${\bf e}_{\rm NP}$ определяет ориентацию дипольного момента НЧ, $E_{nm} = \sqrt{\frac{\hbar\omega_{nm}}{2a_{\rm NP}i(2n+1)\varepsilon_{0}}}$ – размерный множитель, где n – главное квантовое, а m – магнитное квантовые числа [8], $a_{\rm NP}i$ – радиус i-ой HЧ.

Ближнее поле отдельной КТ запишется в виде

$$\hat{\mathbf{E}}_{\mathrm{QD}i} = \frac{1}{4\pi\varepsilon_0} \frac{3\mathbf{n} \left(\mathbf{n} \cdot \mathbf{e}_{\mathrm{QD}i}\right) - \mathbf{e}_{\mathrm{QD}i}}{r^3} \hat{d}_{\mathrm{QD}i},\qquad(1)$$

где оператор дипольного момента $\hat{d}_{\text{QD}i} = \mu_{\text{QD}i} \left(\hat{S}_i + \hat{S}_i^+ \right) \mathbf{e}_{\text{QD}}$ выражается через операторы рождения $\hat{S}_i^+ = |e\rangle_i \langle g|_i$ и уничтожения $\hat{S}_i = |g\rangle_i \langle e|_i$ экситонов и матричный элемент $\mu_{\text{QD}i}$ соответствующих межзонных переходов в КТ, где $|e\rangle_i$ соответствует возбужденному, а $|g\rangle_i$ основному состоянию системы. Приводимые операторы удовлетворяют коммутационным соотношениям $\left[\hat{S}_i^+, \hat{S}_i \right] = \hat{D}_i$ и $\left[\hat{S}_i, \hat{D}_i \right] = 2\hat{S}_i$, где $\hat{D}_i = \hat{S}_i^+ \hat{S}_i - \hat{S}_i \hat{S}_i^+$ является оператором инверсии; \mathbf{e}_{QD} определяет ориентацию дипольного момента КТ.

В условиях $\lambda_{1,2} \gg r > a_{\rm NP}i(a_{\rm QD}i)$, где $a_{\rm QD}i -$ радиус КТ, а $\lambda_{1,2} -$ длина волны перехода в КТ, кинетика системы определяется исключительно парными диполь-дипольными взаимодействиями [16]. В частности, гамильтониан взаимодействия между НЧ и КТ может быть представлен в виде $V_i^{\rm QN} = -\hat{E}_{\rm NP}^{\parallel}\hat{d}_{\rm QD}i$. Для данного типа взаимодействия $\theta = 0$ и справедливо $P_1^0(\cos \theta) = 1$, $P_1^{m\neq 0}(\cos \theta) = 0$. Таким образом, поле НЧ в области нахождения КТ имеет вид

$$\hat{\mathbf{E}}_{\mathrm{NP}i}^{\parallel} = \sqrt{\frac{\hbar\omega_{pi}a_{\mathrm{NP}i}^{3}}{2\pi\varepsilon_{0}}\frac{1}{r^{3}}\left(\hat{c}_{i}+\hat{c}_{i}^{+}\right)\mathbf{e}_{\mathrm{NP}i}},\qquad(2)$$

где ω_{pi} задают плазмонные частоты. Гамильтониан взаимодействия соседних НЧ $V^{\rm NN} = -\hat{\rm E}_{\rm NP1}^{\perp} \hat{d}_{\rm NP2}$ определяется ориентацией $\theta = \pi/2$, для которой $P_1^1(\cos \theta) = 1$ и $P_1^{m\neq 1}(\cos \theta) = 0$. В этом случае выражение для поля принимает вид:

$$\hat{\mathbf{E}}_{\mathrm{NP}i}^{\perp} = \sqrt{\frac{\hbar\omega_{pi}a_{\mathrm{NP}i}^{3}}{4\pi\varepsilon_{0}}} \frac{1}{r^{3}} \left(\hat{c}_{i} + \hat{c}_{i}^{+}\right) \mathbf{e}_{\mathrm{NP}i},\qquad(3)$$

а соответствующий наведенный дипольный момент НЧ может быть получен из (1) и составит $\hat{d}_{\rm NPi} =$ $= \mu_{\rm NPi} \left(\hat{c}_i + \hat{c}_i^+ \right) \mathbf{e}_{\rm NP}$, где $\mu_{\rm NPi} = \sqrt{4\pi\varepsilon_0 \hbar \omega_{pi} a_{\rm NPi}^3}$. Наконец, гамильтониан взаимодействия $V^{\rm QQ} =$ $= -\hat{\rm E}_{\rm QD1} \hat{d}_{\rm QD2}$ между отдельными КТ в структуре спазера определяется заданной геометрией, при которой ($\mathbf{n} \cdot \mathbf{e}_{\rm QDi}$) = 0.

Основываясь на необходимости внутренней симметрии расположения слоев КТ и НЧ в случае масштабирования устройства, положим $r_{\rm NP} = r_{\rm QD} = r_1$, $r_{\rm QN} = r$. Режим работы системы зависит от соотношения частот $\omega_{1,2}$ перехода в КТ и плазмонных частот $\omega_{p1,p2}$. Обычно их полагают близкими друг другу $\omega_i \approx \omega_{pi}$ [6], при этом в системе преимущественно реализуются линейные по квантованному полю плазмонов взаимодействия. Соответствующий гамильтониан взаимодействия принимает вид

$$H = \hbar \omega_{p1} \hat{c}_{1}^{+} \hat{c}_{1} + \hbar \omega_{p2} \hat{c}_{2}^{+} \hat{c}_{2} + \frac{\hbar \omega_{1}}{2} D_{1} + \frac{\hbar \omega_{2}}{2} D_{2} + \\ + \hbar \Omega_{1} \left(\hat{c}_{1} \hat{S}_{1}^{+} + \hat{c}_{1}^{+} \hat{S}_{1} \right) + \hbar \Omega_{2} \left(\hat{c}_{2} \hat{S}_{2}^{+} + \hat{c}_{2}^{+} \hat{S}_{2} \right) + \\ + \hbar \Omega_{QQ} \left(\hat{S}_{1} \hat{S}_{2}^{+} + \hat{S}_{1}^{+} \hat{S}_{2} \right) + \hbar \Omega_{pp} \left(\hat{c}_{1} \hat{c}_{2}^{+} + \hat{c}_{1}^{+} \hat{c}_{2} \right), \quad (4)$$

где пятый и шестой члены с $\Omega_i = \sqrt{\frac{\omega_{pi}a_{\mathrm{NP}i}^3}{2\pi\varepsilon_0\hbar}} \frac{\mu_{\mathrm{QD}}}{r^3}$ соответствуют V_i^{QN} , седьмой с $\Omega_{\mathrm{QQ}} = \frac{\mu_{\mathrm{QD}}^2}{4\pi\varepsilon_0\hbar r_1^3}$ появляется из V^{QQ} , а слагаемое с $\Omega_{pp} = \frac{\mu_{\mathrm{NP}}^2}{4\pi\varepsilon_0\hbar r_1^3}$ определяется гамильтонианом V^{NN} . Перекрестным взаимодействием между НЧ и КТ из соседних спазеров мы пренебрегаем.

В качестве модельной среды выберем спазер, состоящий из золотой НЧ и КТ на основе полупроводника CdSe, для которого выбранные состояния $|g\rangle_i$ и $|e\rangle_i$ соответствуют уровням дырки 1S (h) и 1S (e) электрона. Оценки размеров КТ при этом могут быть выполнены исходя из частоты плазмонной моды $\omega_p = \omega_{p1} = \omega_{p2}$, которая для сферической золотой НЧ соответствует длине волны 520 нм. Для выполнения условия точного резонанса $\omega_p = \omega$ между НЧ и КТ, размер КТ задается известной зависимостью [17] энергии перехода 1S (e) \rightarrow 1S (h) от их диаметра $D_{\rm QD} = 2a_{\rm QD}$:

$$E_{bb} = \hbar\omega_p =$$

$$= E_g + 2\frac{\hbar^2 \pi^2}{D_{\rm QD}^2} \left(\frac{1}{m_e} + \frac{1}{m_h}\right) - \frac{3.56 \cdot e^2}{4\pi\varepsilon_0\varepsilon} \frac{1}{D_{\rm QD}}, \quad (5)$$

где e – заряд электрона, \hbar – постоянная Планка, m_e и m_h – эффективные массы электрона и дырки в объеме материала КТ с диэлектрической проницаемостью ε и шириной запрещенной зоны E_g . Для CdSe соответствующие параметры составят $E_g/e =$ = 1.76 эВ, $m_e = 0.125m_0$, $m_h = 0.43m_0$ и $\varepsilon = 10$ [18] в соответствии с чем $D_{\rm QD} = 4.97$ нм. Боровский радиус экситона $R_{\rm ex}$ для CdSe составляет 2.5 нм [19], поэтому для рассматриваемых КТ будет наблюдаться сильный конфаймент [20], а энергетические уровни в зоне проводимости существенно разнесены. В связи с этим можно полагать, что при ближнеполевом взаимодействии НЧ и КТ будет справедлива двухуровневая модель.

Величина дипольного момента соответствующего межзонного перехода [21] приближенно может быть определена как $|\mu_{\rm QD}|^2 = \frac{e^2}{6m_0\omega_p^2} \left(\frac{m_0}{m_e} - 1\right) \frac{E_{bb}(E_{bb} + \Delta_0)}{E_{bb} + 2\Delta_0/3}$ и при выбранных условиях составит $\mu_{\rm QD} = 0.309$ · $10^{-28}\,\mathrm{Kn}\cdot\mathrm{m},$ где величина спин-орбитального расщепления составляет $\Delta_0 = 0.38$ эВ. Дипольный момент НЧ, радиус которой в точности совпадает с радиусом KT, составит значение $\mu_{\rm NP} = 4.548 \times 10^{-28} \, {\rm Kj} \cdot {\rm m}.$ Полагая спазер 2×2 квадратным с размерами $r_1 =$ = r = 5.3 нм, соответствующие частоты в (4) примут значения $\Omega_1 = \Omega_2 = \Omega = 2.026 \cdot 10^{13} \text{ c}^{-1}$, $\Omega_{\text{QQ}} = 5.49 \cdot 10^{11} \text{ c}^{-1}$, $\Omega_{pp} = 1.19 \cdot 10^{14} \text{ c}^{-1}$. Видно, что эффективность диполь-дипольного взаимодействия между отдельными КТ в представленной геометрии существенно ниже аналогичной как между соседними НЧ, так и в паре НЧ-КТ. Таким образом, слагаемым с Ω_{QQ} можно пренебречь и перейти к рассмотрению полученной на основе (4) системы уравнений Гейзенберга–Ланжевена:

$$\dot{\hat{c}}_1 = i \left(\Delta_1 + \frac{i}{\tau_{c1}} \right) \hat{c}_1 - i \Omega_1 \hat{S}_1 - i \Omega_{pp} \hat{c}_2 + \hat{F}_{c1},$$
 (6a)

$$\dot{\hat{c}}_2 = i \left(\Delta_2 + \frac{i}{\tau_{c2}} \right) \hat{c}_2 - i \Omega_2 \hat{S}_2 - i \Omega_{pp} \hat{c}_1 + \hat{F}_{c2},$$
 (6b)

$$\dot{\hat{S}}_1 = i \left(\delta_1 + \frac{i}{\tau_{S1}} \right) \hat{S}_1 + i \Omega_1 \hat{D}_1 \hat{c}_1 + \hat{F}_{S1},$$
 (6c)

$$\dot{\hat{S}}_2 = i \left(\delta_2 + \frac{i}{\tau_{S2}} \right) \hat{S}_2 + i \Omega_2 \hat{D}_2 \hat{c}_2 + \hat{F}_{S2},$$
 (6d)

$$\dot{\hat{D}}_1 = -2i\Omega_1 \left(\hat{S}_1^+ \hat{c}_1 - \hat{S}_1 \hat{c}_1^+ \right) - \frac{\hat{D}_1 - \hat{D}_{01}}{\tau_{D1}} + \hat{F}_{D1}, \quad (6e)$$

$$\dot{\hat{D}}_2 = -2i\Omega_2 \left(\hat{S}_2^+ \hat{c}_2 - \hat{S}_2 \hat{c}_2^+ \right) - \frac{\hat{D}_2 - \hat{D}_{02}}{\tau_{D2}} + \hat{F}_{D2}, \quad (6f)$$

где $\Delta_1 = \bar{\omega} - \omega_{p1}, \Delta_2 = \bar{\omega} - \omega_{p2}, \delta_1 = \bar{\omega} - \omega_1, \delta_2 = \bar{\omega} - \omega_2$, а параметры $\bar{\omega}$ и $\hat{D}_{01(02)}$ соответствуют частоте и величине накачки спазера, соответственно. При выводе системы (6) использовались приближения $\hat{c} = \hat{c} \cdot \exp(-i\bar{\omega}t)$ и $\hat{S} = \hat{S} \cdot \exp(-i\bar{\omega}t)$ при переходе к новым медленно меняющимся операторам $\hat{c}(\hat{c}^+)$ и $\hat{S}(\hat{S}^+)$.

В уравнениях (6) характерные параметры скорости затухания плазмонов $\frac{1}{\tau_{c1(c2)}}$ в НЧ, скорости затухания экситонов $\frac{1}{\tau_{S1(S2)}}$ в возбужденных КТ, а также

Письма в ЖЭТФ том 107 вып. 7-8 2018

операторы ланжевеновских шумов $\hat{F}_{c1(c2)}$ ($\hat{F}_{S1(S2)}$, $\hat{F}_{D1(D2)}$) введены феноменологически [22], исходя из условия взаимодействия системы с резервуаром.

На основе уравнения (1) можно получить два корня для частоты спазирования $\bar{\omega}$ и величины порога $D_{\rm th}$:

$$\bar{\omega}_{\pm} = \frac{\tau_S \omega + \tau_c \left(\omega_p \pm \Omega_{pp}\right)}{\tau_c + \tau_S}, \tag{7a}$$
$$D_{\text{th},\mp} = \frac{1 + \left(\frac{\tau_c \tau_S}{\tau_c + \tau_S}\right)^2}{\tau_c \tau_S \Omega^2} \times \left(\omega - \omega_p \mp \Omega_{pp}\right)^2$$

$$\times \frac{(\omega - \omega_p \mp \Omega_{pp})^2}{\tau_c \tau_S \Omega^2},\tag{7b}$$

один из которых, $(\bar{\omega}_{-}, D_{\mathrm{th},+})$, является неустойчивым, поэтому далее будем полагать, что $D_{\mathrm{th}} = D_{\mathrm{th},-}$.

Отметим, что в предельном случае $\Omega_{pp} = 0$ репения (7) совпадают с известной моделью спазера 1×1 , состоящего из одной КТ и одной НЧ [7], однако, наличие ближнеполевого взаимодействия между НЧ существенно повышает порог генерации. С выбранными параметрами взаимодействия значения порогов составят $D_{\rm th}^{1\times 1} = D_{\rm th} (\Omega_{\rm pp} = 0) = 0.0039$ и $D_{\rm th}^{2\times 2} =$ $= D_{\rm th} (\Omega_{\rm pp} = 1.19 \cdot 10^{14} \, {\rm c}^{-1}) = 0.0383$, а при дальнейшем моделировании накачка полагается равной для обоих типов спазера и выбирается исходя из условия $D_0 = \max(D_{\rm th}^{1\times 1}, D_{\rm th}^{2\times 2}).$

Полагая $c_1 = c_2 = c$ ($S_1 = S_2 = S$), стационарные решения для амплитуды генерируемых плазмонов и формируемых в КТ экситонов примут вид, определенный с точностью до фазы ϕ :

$$\bar{c} = e^{i\phi_i} \sqrt{\frac{\tau_c}{4\tau_D} \left(D_0 - D_{\rm th}\right)},\tag{8a}$$

$$\bar{S} = \frac{i + \frac{\tau_c \tau_S}{\tau_c + \tau_S} \left(\omega - \omega_p - \Omega_{pp}\right)}{\tau_c \Omega} \bar{c}.$$
 (8b)

Проверка устойчивости полученных решений осуществлялась как анализом собственных значений λ_i линеаризованной вблизи особых точек (8) усредненной системы (6), так и на основе ее прямого численного моделирования. При этом, для полученных решений (8) один из корней характеристического уравнения (6) всегда принимает нулевое значение, а для остальных выполняется неравенство $\text{Re}(\lambda_i) < 0$, т.е. в отсутствии внешней синхронизации система находится на границе апериодической устойчивости. Но численный анализ системы (6) выявляет наличие устойчивости полученных решений (8).

На рис. 2 представлена такая параметрическая плоскость, образованная сочетанием параметров величины накачки D_0 и характерного времени τ_S с нанесенной областью стабильности решений (8), проверенных численным моделированием системы (6).

Рис. 2. Параметрическая плоскость (величина накачки D_0 , время затухания экситонов в КТ τ_S) с нанесенной областью устойчивости генерации спазера 2 × 2 и выбранной точкой A с координатами (0.5, 0.25 $\cdot 10^{-10}$ с). На вставке – зависимости среднего числа плазмонов $|\vec{c}|^2$ (толстые линии) и экситонов $|\vec{S}|^2$ (тонкие линии) от величины накачки с учетом Ω_{pp} (сплошные кривые) и без (штриховые кривые). Параметры взаимодействия составляют: $\omega_p = \omega = 3.625 \cdot 10^{15}$ с⁻¹, $\Omega = 2.026 \cdot 10^{13}$ с⁻¹, $\Omega_{pp} = 1.19 \cdot 10^{14}$ с⁻¹, $\tau_c = 0.25 \cdot 10^{-13}$ с, $\tau_D = 2.85 \cdot 10^{-15}$ с

Переходя к рассмотрению квантово-статистических особенностей [23] представленной системы, остановимся на изучении известного параметра автокорреляционной функции $G^{(2)}$ второго порядка для плазмонных мод:

$$G_i^{(2)}(t) = \frac{\langle (\hat{c}_i^+(t))^2 (\hat{c}_i(t))^2 \rangle}{\langle \hat{c}_i^+(t) \hat{c}_i(t) \rangle^2} - 1.$$
(9)

В нашем случае параметр $G_i^{(2)}(t)$ является мерой неклассичности статистических свойств генерируемых плазмонов, сигнализируя либо об эффекте группировки плазмонов при $G_i^{(2)} > 0$ (классическая суперпуассоновская статистика), либо их антигруппировке при $G_i^{(2)} < 0$ (неклассическая субпуассоновская статистика).

Используя теорему Вика, степень входящего в (9) коррелятора четвертого порядка может быть понижена при переходе к билиненым комбинациям на основе плазмонных и экситонных операторов. В свою очередь, используя (6), для таких комбинаций может быть построена система самосогласованных уравнений, аналогично [24]. Это позволяет проследить развитие автокорреляционной функции во времени. На рис. 3 представлены результаты численного моделирования такой системы и ее решение в отношении автокорреляционной функции $G_1^{(2)}(t)$ при выборе тех же параметров взаимодействия как для точки A с рис. 2.

Рис. 3. Зависимости автокорреляционной функции $G_i^{(2)}$ от времени для спазеров 2×2 (сплошная линия) и 1×1 при $\Omega_{pp} = 0$ (штриховая линия) при наличии начальных корреляций в системе, рассчитываемых в виде $\langle \hat{c}_i^+ \hat{S}_i \rangle|_{t=0} = c_i^*(0)S_i(0), \langle \hat{c}_i^+ \hat{c}_i \rangle|_{t=0} = |c_i(0)|^2, \langle \hat{S}_i^+ \hat{S}_i \rangle|_{t=0} = |S_i(0)|^2$ и т.д., где параметры взаимодействия соответствуют рис. 2

Расчетное значение $G_1^{(2)}(0)$ для спазера 1 × 1 (штриховая линия на рис. 3) составляет 2, что соответствует суперпуассоновской статистике. Это значение практически не изменяется с течением времени при выходе системы к стационарному положению. Вместе с тем, учет близких диполь-дипольных взаимодействий между НЧ спазера 2 × 2 приводит к существенному уменьшению $G_1^{(2)}(t)$ вплоть до единичного уровня. Таким образом, интенсивный энергообмен между НЧ ведет к быстрому изменению начальной статистики плазмонов. Однако, при любом допустимом наборе управляющих параметров моделирования, статистика плазмонов всегда остается суперпуассоновской. Данное обстоятельство существенно ограничивает возможность генерации и управления неклассическими состояниями [25] локализованных плазмонов в цепочках линейных спазеров. Вместе с тем, такие состояния необходимы для реализации квантовых протоколов в плазмонных схемах [26]. По всей видимости, этот вопрос может быть решен в системах с нелинейным плазмон-экситонным взаимодействием по аналогии с оптикой [27–30].

В практическом плане, интерес представляет вопрос размещения цепочек спазеров на поверхностности и в толще диэлекрических сред [31] и решение задачи рассеяния для таких систем [32, 33], а также их взаимодействия с волновыми структурами сложной формы [34]. Вопрос оптимизации параметров системы может быть решен с помощью комбинированных зондово-оптических экспериментов [35, 36]. Например, путем синхронизации механического воздействия на нанообъекты атомно-силовым микроскопом и считывания их ближнеполевого отклика посредством ближнеполевого сканирующего микроскопа. Интегрирование представленных систем внутрь диэлектрической матрицы требует также решения задачи учета локального отклика для неоднородных сред [37].

А.В. Прохоров благодарен А.Б. Евлюхину за полезные обсуждения. Работа поддержана региональным грантом РФФИ #17-42-330001 р а и выполнена в рамках договора $2226\Gamma C1/37022$ с фондом содействия инновациям, а также государственного задания ВлГУ 2017 г. в сфере научной деятельности, грантом 0-1067 МПГУ.

- D. Bimberg, N. Kirstaedter, N.N. Ledentsov, Zh.I. Alferov, P.S. Kop'ev, and V.M. Ustinov, IEEE Journal of Selected Topics in Quantum Electronics 3, 196 (1997).
- M. P. Klembovsky, M. L. Gorodetsky, T. Becker, and H. Walther, Письма в ЖЭТФ 79, 550 (2004).
- E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, Appl. Phys. Lett. 92, 083110 (2008).
- M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, U. Nature 460, 1110 (2009).
- 5. M. I. Stockman, Nature Photonics 2, 327 (2008).
- 6. M. I. Stockman, J. Opt. 12, 024004 (2010).
- А.П. Виноградов, Е.С. Андрианов, А.А. Пухов, А.В. Дорофеенко, А.А. Лисянский, УФН 182, 1122 (2012).
- 8. В.В. Климов, *Наноплазмоника*, Физматлит, М. (2010).
- Y.-J. Lu, J. Kim, H.-Y. Chen et al. (Collaboration), Science 337, 450 (2012).
- G.I. Struchalin, I.A. Pogorelov, S.S. Straupe et al. (Collaboration), Phys. Rev. A 93, 012103 (2016).
- S. V. Fedorov, N. N. Rosanov, A. V. Chipouline, and T. Pertsch, J. Opt. Soc. Am. B. **32**, 824 (2015).
- C. Reinhardt, A.B. Evlyukhin, W. Cheng, T. Birr, A. Markov, B. Ung, M. Skorobogatiy, and B.N. Chichkov, J. Opt. Soc. Am. B. **30**, 2898 (2013).
- 13. I.V. Dzedolik, J. Opt. 16, 125002 (2014).
- 14. Д. Н. Клышко, УФН 166, 613 (1996).

- A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, Nature 450, 402 (2007).
- Е.С. Андрианов, А.А. Пухов, А.П. Виноградов, А.В. Дорофеенко, А.А. Лисянский, Письма в ЖЭТФ 97, 522 (2013).
- N. Bel Haj Mohamed, M. Haouari, Z. Zaaboub, M. Nafoutti, F. Hassen, H. Maaref, and H. Ben Ouada, J. Nanopart. Res. 16, 2242 (2014).
- 18. С.И. Покутний, ФТП 40, 223 (2006).
- 19. С.И. Покутний, ФТП 44, 507 (2010).
- Оптика наноструктур, под ред. А. В. Федорова, Недра, СПб. (2005).
- 21. А.О. Меликян, Г.Р. Минасян, ФТП 34, 399 (2000).
- A. S. Rosenthal and T. Ghannam, Phys. Rev. A. 79, 043824 (2009).
- J. Perina, Quantum Statistics of Linear and Nonlinear Optical Phenomena, D.Reidel Publishing Company, Lancaster (1984) [Я. Перина, Квантовая статистика линейных и нелинейных оптических явлений, Мир, М. (1987)].
- M. O. Scully and M. S. Zubairy, Quantum optics, Cambridge university press, Cambridge (1997) [М. О. Скалли, М. С. Зубайри, Квантовая оптика, Физматлит, М. (2003)].
- A. P. Alodjants, A. V. Prokhorov, and S. M. Arakelian, Laser Physics 13, 1264 (2003).
- Ed. by S.I. Bozhevolnyi, L. Martin-Moreno, and F. Garcia-Vidal, *Quantum Plasmonics*, Springer, Cham (2017).
- А.В. Прохоров, А.П. Алоджанц, С.М. Аракелян, Письма в ЖЭТФ 80, 870 (2004).
- A. P. Alodjants, A. Yu. Leksin, A. V. Prokhorov, and S. M. Arakelian, Laser Physics 10, 603 (2000).
- С. Д. Ганичев, С. А. Емельянов, Е. Л. Ивченко, Е. Ю. Перлин, И. Д. Ярошецкий, Письма в ЖЭТФ 37, 479 (1983).
- А.В. Шестериков, М.Ю. Губин, М.Г. Гладуш, А.В. Прохоров, ЖЭТФ 151, 24 (2017).
- Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Advanced Materials 15, 353 (2003).
- A. B. Evlyukhin and S. I. Bozhevolnyi, Phys. Rev. B. 92, 245419 (2015).
- А. Б. Евлюхин, С. И. Божевольный, Письма в ЖЭТФ 81, 278 (2005).
- A. V. Prokhorov, M. G. Gladush, M. Yu. Gubin, A. Yu. Leksin, S. M. Arakelian, Eur. Phys. J. D 68, 158 (2014).
- D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, and X. Li, Nano Lett. **11**, 1049 (2011).
- A. V. Naumov, A. A. Gorshelev, Y. G. Vainer, L. Kador, and J. Köhler, Phys. Chem. Chem. Phys. 13, 1734 (2011).
- 37. T.A. Anikushina, M.G. Gladush, A.A. Gorshelev, and A.V. Naumov, Faraday Discussions 184, 263 (2015).