Биэлектрон в 2D системе, обусловленный спин-орбитальным взаимодействием и силами изображения

М. М. Махмудиан^{+*}, А. В. Чаплик^{+*1)}

+ Институт физики полупроводников им. А.В. Ржанова СО РАН, 630090 Новосибирск, Россия

*Новосибирский государственный университет, 630090 Новосибирск, Россия

Поступила в редакцию 21 марта 2018 г. После переработки 2 апреля 2018 г.

Показано, что два электрона, находящиеся в квантовой яме вблизи металлического электрода, притягиваются друг к другу за счет спин-орбитального взаимодействия (СОВ) типа Бычкова–Рашба и сил электростатического изображения. На примере простой модели показано, что при вполне достижимых значениях характеристических параметров системы эффективное притяжение, вызванное СОВ, превалирует над кулоновским отталкиванием, и образование биэлектрона становится возможным.

DOI: 10.7868/S0370274X18090096

Введение. С начала 2000-х годов в литературе неоднократно обсуждался вопрос о влиянии сил электростатического изображения в структурах типа МДП (MOS) с двумерным электронным газом на спин-орбитальное взаимодействие электронов [1– 3]. В работе Гиндикина и Сабликова [3] показано, что квазиодномерная электронная система (квантовая проволока) может стать неустойчивой относительно флуктуаций плотности благодаря действию сил изображения в металлическом электроде. Цель настоящего сообщения – показать, что такие силы могут при определенных условиях привести к образованию электронной пары – биэлектрона за счет превалирования эффективного притяжения в паре, вызванного СОВ, над кулоновским отталкиванием.

Физическая картина обсуждаемого эффекта состоит в следующем. Как известно, в 2D электронной системе, асимметричной в направлении своей нормали, существует СОВ типа Бычкова–Рашба линейное по планарному импульсу. Это взаимодействие расщепляет дисперсию свободной частицы на две ветви $E = p^2/2m \pm \alpha p$, где p – модуль двумерного импульса, m – эффективная масса, α – характерная для данной системы константа СОВ. Эта величина зависит от нормальной к плоскости системы компоненты электрического поля $\alpha = AF_z$, где A не зависит от поля (см. работы Волкова и Девизоровой с соавторами [4, 5]). В МДП-структуре требуемое нарушение центросимметричности обеспечивается присутствием металлического электрода. В системе двух

электронов действующее на каждый из них полное нормальное поле F_z (в дальнейшем индекс z опускаем) зависит от расстояния между частицами (см. рис. 1):

Рис. 1. Схематическое изображение структуры. Стрелки показывают направления сил, действующих на электроны

$$F = \frac{e}{\varepsilon D^2} + \frac{eD}{\varepsilon \left(D^2 + \rho^2\right)^{3/2}}, \quad \rho = |\boldsymbol{\rho}_1 - \boldsymbol{\rho}_2|.$$
(1)

Здесь ε – диэлектрическая постоянная, D/2 – расстояние от квантовой ямы до металла. Это поле увеличивается с уменьшением ρ . Нижняя ветвь расщепленного спектра электрона имеет участок отрицательных значений E, наиболее глубокое из которых соответствует петле экстремумов: $E_{\rm min} = m\alpha^2/2$. Уменьшение ρ приводит к увеличению параметра α и, следовательно, к понижению энергии системы за счет СОВ, тогда как кулоновское отталкивание $e^2/\varepsilon\rho - e^2/\varepsilon\sqrt{\rho^2 + D^2}$ дает положительный вклад в

¹⁾e-mail: chaplik@isp.nsc.ru

энергию, также растущий при уменьшении ρ . Если баланс окажется отрицательным, возникнет связанное состояние – биэлектрон. Очевидно, что соответствующий уровень энергии должен лежать ниже $-m\alpha^2$ – суммарной минимальной энергии двух электронов на бесконечно большом расстоянии.

Основные уравнения. Гамильтониан пары электронов в описанной выше структуре имеет вид

$$\hat{H} = \hat{H}_0 + AF\mathbf{n} \left(\left[\hat{\mathbf{p}}_1 \boldsymbol{\sigma}_1 \right] + \left[\hat{\mathbf{p}}_2 \boldsymbol{\sigma}_2 \right] \right), \qquad (2)$$

где **n** – единичный вектор нормали,

$$\hat{H}_{0} = \frac{\hat{\mathbf{p}}_{1}^{2} + \hat{\mathbf{p}}_{2}^{2}}{2m} + \frac{2e^{2}}{\varepsilon} \left(\frac{1}{\rho} - \frac{1}{\sqrt{\rho^{2} + D^{2}}} \right).$$
(3)

Здесь опущены несущественные для дальнейшего слагаемые, описывающие взаимодействие электронов с собственными изображениями, однако вклады этого взаимодействия в F, разумеется, учтены².

Оператор \hat{H} действует на волновую функцию двух частиц со спином 1/2, т.е. на биспинор $(\psi_1\psi_2\psi_3\psi_4)$. Каждая из матриц Паули в (2) действует на "свой" спинор (u_1u_2) или (v_1v_2) , а часть гамильтониана \hat{H}_0 подразумевается умноженной на единичную матрицу 4 × 4. В спинорных компонентах гамильтониан (2) записывается как

$$\hat{H} = \hat{H}_0 \delta_{\alpha\beta} \delta_{\gamma\delta} + AF \mathbf{n} \left(\left[\hat{\mathbf{p}}_1 \boldsymbol{\sigma}_{\alpha\beta} \right] \delta_{\gamma\delta} + \left[\hat{\mathbf{p}}_2 \boldsymbol{\sigma}_{\gamma\delta} \right] \delta_{\alpha\beta} \right),$$
(4)

а искомую волновую функцию следует представить в виде $u_{\beta}v_{\delta}$. Свободными индексами, нумерующими четыре уравнения, выбираем α, γ ; компоненты ψ записываются в виде

$$\psi_1 = u_1 v_1, \quad \psi_2 = u_1 v_2, \quad \psi_3 = u_2 v_1, \quad \psi_4 = u_2 v_2.$$
 (5)

Подчеркнем, что такая запись вовсе не означает, что двухчастичная функция $\psi(\rho_1, \rho_2)$ распадается на произведение функций, зависящих каждая лишь от ρ_1 или ρ_2 . Соотношения (5) просто показывают, на какой спинор действуют матрицы Паули σ_1 и σ_2 . Система уравнений, соответствующая гамильтониану (4), имеет вид

$$\begin{aligned} &\hat{H}_{0}\psi_{1} + \mathbf{An} \left\{ F\left(\left[\hat{\mathbf{p}}_{1}\boldsymbol{\sigma}_{12} \right]\psi_{3} + \left[\hat{\mathbf{p}}_{2}\boldsymbol{\sigma}_{12} \right]\psi_{2} \right) \right\} = E\psi_{1}, \\ &\hat{H}_{0}\psi_{2} + \mathbf{An} \left\{ F\left(\left[\hat{\mathbf{p}}_{1}\boldsymbol{\sigma}_{12} \right]\psi_{4} + \left[\hat{\mathbf{p}}_{2}\boldsymbol{\sigma}_{21} \right]\psi_{1} \right) \right\} = E\psi_{2}, \\ &\hat{H}_{0}\psi_{3} + \mathbf{An} \left\{ F\left(\left[\hat{\mathbf{p}}_{1}\boldsymbol{\sigma}_{21} \right]\psi_{1} + \left[\hat{\mathbf{p}}_{2}\boldsymbol{\sigma}_{12} \right]\psi_{4} \right) \right\} = E\psi_{3}, \\ &\hat{H}_{0}\psi_{4} + \mathbf{An} \left\{ F\left(\left[\hat{\mathbf{p}}_{1}\boldsymbol{\sigma}_{21} \right]\psi_{2} + \left[\hat{\mathbf{p}}_{2}\boldsymbol{\sigma}_{21} \right]\psi_{3} \right) \right\} = E\psi_{4}. \end{aligned}$$

Письма в ЖЭТФ том 107 вып. 9-10 2018

Фигурные скобки в (6) означают операцию эрмитизации: $\{\hat{Q}\hat{R}\} = \frac{1}{2} (\hat{Q}\hat{R} + \hat{R}\hat{Q})$. Дело в том, что из-за зависимости F от ρ операторы импульсов не коммутируют с F, так что в (2) и (4) гамильтонианы не являются эрмитовыми.

Полезно посмотреть, как в пренебрежении взаимодействием между электронами из уравнений (6) получается энергия пары свободных частиц с учетом СОВ. Ищем решения в виде плоских волн (здесь и далее $\hbar = 1$)

$$u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} e^{i\mathbf{p}_1\boldsymbol{\rho}_1}, \quad v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} e^{i\mathbf{p}_2\boldsymbol{\rho}_2}$$

и легко находим детерминант 4х4 системы линейных уравнений для ψ_i (i = 1...4), записанных по схеме (5):

$$\begin{array}{c|ccccc} G & b_2^* & b_1^* & 0 \\ b_2 & G & 0 & b_1^* \\ b_1 & 0 & G & b_2^* \\ 0 & b_1 & b_2 & G \end{array} \right| = 0; \quad \begin{array}{c} G \equiv \left(p_1^2 + p_2^2\right)/2m - E, \\ b_1 \equiv AF_0\left(ip_{1x} - p_{1y}\right), \\ b_2 \equiv AF_0\left(ip_{2x} - p_{2y}\right), \\ F_0 = e/\varepsilon D^2. \end{array}$$
(7)

Отсюда следует дисперсионное уравнение

$$G^{4} - 2G^{2} \left(|b_{1}|^{2} + |b_{2}|^{2} \right) + \left(|b_{1}|^{2} - |b_{2}|^{2} \right)^{2} = 0, \quad (8)$$

четыре корня которого равны

$$E = \frac{p_1^2 + p_2^2}{2m} \pm \alpha_0 \left(p_1 \pm p_2 \right). \tag{9}$$

Здесь $\alpha_0 = AF_0$ – константа СОВ свободного электрона (взаимодействует только с собственным изображением). Как и следовало, (9) дает все четыре возможные комбинации ветвей дисперсии двух невзаимодействующих электронов.

Возвращаясь к предмету работы, перейдем в систему центра масс $\mathbf{R} = (\rho_1 + \rho_2)/2$, $\rho = \rho_1 - \rho_2$. Поскольку в уравнениях (6) коэффициенты зависят лишь от ρ , решение имеет вид $e^{i\mathbf{PR}}\psi(\rho)$. Рассматриваем далее покоящуюся как целое пару с $\mathbf{P} = 0$ и введем полярные координаты ρ и φ в плоскости двумерного вектора ρ . В спин-орбитальных членах уравнений (6) фигурируют лишь комбинации $\partial/\partial_x \pm i\partial/\partial_y =$ $= e^{\pm i\varphi}(\partial/\partial\rho \pm (i/\rho)\partial/\partial\varphi)$. Очевидно, что наименьшему по энергии состоянию отвечает минимально возможное значение сохраняющегося полного (орбитальный + спиновый) момента относительного движения в паре. Легко проверить, что такому состоянию соответствуют решения системы (6) вида

$$\psi_1 = \chi_1(\rho)e^{-i\varphi}, \ \psi_2 = \chi_2(\rho), \psi_3 = \chi_3(\rho), \ \psi_4 = \chi_4(\rho)e^{i\varphi}.$$
(10)

²⁾Волновое уравнение с гамильтонианом (2) с учетом (3) вполне аналогично известному из квантовой электродинамики уравнению Брейта–Ландау.

После подстановки (10) в (6) переменная φ исключается, и мы приходим к системе уравнений для $\chi_i(\rho)$:

$$\left(\hat{T}_1 + V(\rho) \right) \chi_1 + AF(\rho) \left(\frac{\partial \chi_2}{\partial \rho} - \frac{\partial \chi_3}{\partial \rho} \right) + \frac{A}{2} \left(\chi_2 - \chi_3 \right) \frac{\partial F}{\partial \rho} = E\chi_1,$$
 (11)

$$\left(\hat{T}_{0} + V(\rho)\right)\chi_{2} - AF(\rho)\left[\frac{\partial\chi_{1}}{\partial\rho} + \frac{\partial\chi_{4}}{\partial\rho} + \frac{1}{\rho}(\chi_{1} + \chi_{4})\right] - \frac{A}{2}(\chi_{1} + \chi_{4})\frac{\partial F}{\partial\rho} = E\chi_{2},$$
(12)

где $V(\rho)$ – кулоновское отталкивание (см. (3)), \hat{T}_0 и \hat{T}_1 – операторы кинетической энергии для азимутальных моментов 0 и 1, соответственно:

$$\hat{T}_0 = -\frac{1}{m} \left(\frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} \right),$$
$$\hat{T}_1 = -\frac{1}{m} \left(\frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} - \frac{1}{\rho^2} \right)$$
(13)

(приведенная масса равна m/2). Уравнение для χ_3 отличается от (12) заменой знака $A \to -A$, а уравнение для χ_4 совпадает с (11). В системе (11), (12) уже проведена эрмитизация (последнее слагаемое в левых частях). Из полученных уравнений следует, что

$$(\hat{T}_0 + V(\rho)) (\chi_2 + \chi_3) = E (\chi_2 + \chi_3), (\hat{T}_1 + V(\rho)) (\chi_1 - \chi_4) = E (\chi_1 - \chi_4).$$
 (14)

Уравнения (14) не содержат вкладов СОВ, описывают состояния типа рассеяния двух отталкивающихся частиц, то есть не могут дать искомых локализованных решений. Поэтому ищем решение задачи, в котором выполняются условия $\chi_1 = \chi_4, \chi_2 = -\chi_3$, и приходим окончательно к системе двух уравнений:

$$-\frac{1}{m}\left(\frac{\partial^2}{\partial\rho^2} + \frac{1}{\rho}\frac{\partial}{\partial\rho} - \frac{1}{\rho^2}\right)\chi_1 + V(\rho)\chi_1 + \\ + \frac{2A}{\varepsilon}\left[\left(\frac{e}{D^2} + \frac{eD}{(D^2 + \rho^2)^{3/2}}\right)\frac{\partial}{\partial\rho} - \\ - \frac{3eD\rho}{2(D^2 + \rho^2)^{5/2}}\right]\chi_2 = E\chi_1, \\ - \frac{1}{m}\left(\frac{\partial^2}{\partial\rho^2} + \frac{1}{\rho}\frac{\partial}{\partial\rho}\right)\chi_2 + V(\rho)\chi_2 -$$
(15)
$$- \frac{2A}{\varepsilon}\left[\left(\frac{e}{D^2} + \frac{eD}{(D^2 + \rho^2)^{3/2}}\right)\left(\frac{\partial}{\partial\rho} + \frac{1}{\rho}\right) - \\ - \frac{3eD\rho}{2(D^2 + \rho^2)^{5/2}}\right]\chi_1 = E\chi_2.$$

Здесь важно отметить, что равные друг другу функции χ_1 и χ_4 соответствуют симметричному по спинам состоянию пары частиц u_1v_1 и u_2v_2 (см. (5)), а в полной волновой функции ψ величина χ_1 множится на $e^{-i\varphi}$, χ_4 – на $e^{i\varphi}$ (ур. (10)). Таким образом, при перестановке частиц φ переходит в $\varphi + \pi$, так что полная функция оказывается антисимметричной по перестановке. В случае же компонент ψ_2, ψ_3 зависимость от угла φ отсутствует, а условие $\chi_2 = -\chi_3$ снова обеспечивает антисимметрию полной волновой функции, поскольку $\psi_2 = u_1 v_2, \ \psi_3 = u_2 v_1$. Итак, решения уравнений (15) удовлетворяют принципу Паули и соответствуют полному спину системы равному единице. Физически это вполне понятно: спинорбитальный вклад в энергию от обоих электронов одинаков – именно такая ситуация может привести к образованию связанного состояния.

Искомые решения χ_1, χ_2 должны быть регулярны при $\rho = 0$ и убывать на бесконечности достаточно быстро для выполнения условия нормировки

$$\int \sum_{i=1}^{4} |\psi_i|^2 \rho d\rho d\varphi = 4\pi \int \left(|\chi_1|^2 + |\chi_2|^2 \right) \rho d\rho = 1.$$
(16)

Точно решаемая модель. Интегрирование системы уравнений (15) в аналитическом виде вряд ли возможно. Имея в виду сейчас решение принципиального вопроса о возможности связанного состояния (биэлектрона), рассмотрим модель, качественно соответствующую точным уравнениям (15). Суть ее состоит в замене всех зависящих от ρ коэффициентов в уравнениях прямоугольными барьерами. Например, вместо потенциала кулоновского отталкивания $V(\rho)$, фигурирующего в (3), пишем $V_0\theta(L-\rho)$, где heta – ступенчатая функция Хевисайда. Параметры V_0 и L подбираются так, чтобы сохранялся объем под поверхностью $z = V(\rho)$, т.е. $\pi L^2 V_0 = \int V(\rho) \rho d\rho d\varphi$, откуда находим $V_0 = 4e^2 D/\varepsilon L^2$. Аналогично поступим с остальными членами в уравнениях. Коэффициенты при производных $\partial \chi_{1,2}/\partial \rho$ заменяются на $2[\alpha_0 + \alpha_1 \theta(L - \rho)]$, где $\alpha_1 = 2\alpha_0 D^2/L^2$, а последние слагаемые в левых частях уравнений (15) пишем в виде $\pm V_1 \theta(L-\rho), \quad V_1 = 2\alpha_0 D/L^2.$

Во внешней области $\rho>L$ уравнения решаются точно:

$$\chi_1 = BK_1(q\rho) + \text{k.c.}, \quad \chi_2 = -iBK_0(q\rho) + \text{k.c.}, \quad (17)$$

где *B* – константа, определяемая условием нормировки, *K*₀, *K*₁ – функции Макдональда,

$$q = \sqrt{k^2 - (m\alpha_0)^2} + im\alpha_0, \quad k^2 \equiv -mE.$$
(18)

Таким образом, решение экспоненциально затухает на бесконечности, если $\operatorname{Re} q > 0$, то есть $E < -m\alpha_0^2$ в

Письма в ЖЭТФ том 107 вып. 9-10 2018

полном соответствии с требованием, чтобы уровень связанного состояния лежал ниже суммарной минимальной энергии двух невзаимодействующих электронов.

При
$$\rho < L$$
 имеем

$$\chi_1'' + \frac{1}{\rho}\chi_1' - \frac{1}{\rho^2}\chi_1 - 2m\alpha\chi_2' - V_1\chi_2 = \left(k^2 + mV_0\right)\chi_1,$$

$$\chi_2'' + \frac{1}{\rho}\chi_2' + 2m\alpha\left(\chi_1' + \frac{1}{\rho}\chi_1\right) + V_1\chi_1 =$$

$$= \left(k^2 + mV_0\right)\chi_2,$$
(19)

где введено обозначение $\alpha = \alpha_0 + \alpha_1 = \alpha_0(1 + 2D^2/L^2)$. Точному решению этих уравнений "мешают" последние слагаемые в левых частях. Пренебрежение ими возможно, если $2\alpha\chi'_{1,2} \gg V_1\chi_{1,2}$. Соответствующее условие будет дано ниже после решения укороченных таким образом уравнений. Опуская слагаемые с V_1 , легко находим решения:

$$\chi_1 = C_1 J_1(s_1 \rho) + C_2 J_1(s_2 \rho),$$

$$\chi_2 = C_1 J_0(s_1 \rho) + C_2 J_0(s_2 \rho),$$
(20)

где $C_{1,2}$ – постоянные, $J_{0,1}$ – функции Бесселя,

$$s_{1,2} = m\alpha \pm \sqrt{(m\alpha)^2 - (k^2 + mV_0)}.$$
 (21)

Поскольку решения (20) относятся к внутренней области $\rho < L$, выражение под корнем в (21) может быть и отрицательным. Четыре условия сшивки χ_1, χ_2 и их производных в точке $\rho = L$ приводят к четырем уравнениям на константы B, B^*, C_1 и C_2 , после чего нули детерминанта определят спектр локализованных состояний. Эта программа может быть реализована лишь численными методами, что будет сделано в другом месте. Здесь же с помощью прямого вариационного метода найдем энергию связи биэлектрона и покажем, что он существует при значениях параметров структуры, обеспечивающих применимость сделанных предположений.

В качестве пробной функции выберем биспинор $(\chi_1, \chi_2, -\chi_2, \chi_1)$, где при $\rho < L \chi_1 = CJ_1(\varkappa \rho)$, $\chi_2 = CJ_0(\varkappa \rho)$, а при $\rho > L$ для $\chi_{1,2}$ берем точные решения (17), \varkappa – варьируемый параметр. Тогда при вычислении энергии

$$E \int \left(|\chi_1|^2 + |\chi_2|^2 \right) \rho d\rho = \int \chi_{\alpha}^* \hat{H}_{\alpha\beta} \chi_{\beta} \rho d\rho,$$

$$\alpha, \beta = 1, 2, \qquad (22)$$

вклад в интегралы области $\rho > L$ слева и справа сократится, поскольку туда входят точные решения для энергии E, а останется лишь интегрирование в области $0 < \rho < L$. Формально такой результат соответствует прямому вариационному решению задачи с

твердой стенкой при $\rho = L$, однако пробная функция на стенке в нуль, вообще говоря, не обращается. Биэлектрон заведомо существует, если найденный таким образом уровень окажется ниже значения $-m\alpha_0^2$. Результат действия операторов кинетической энергии $\hat{T}_{0,1}$ на функции $J_{0,1}$ с помощью уравнения Бесселя, а члены с первыми производными в (15) через рекуррентные соотношения для бесселевых функций (см. [8]) выражаются снова через J_0, J_1 . После этого интегралы слева и справа в (22) сокращаются и для энергии получаем:

$$E(\varkappa) = \frac{\varkappa^2}{m} + V_0 - 2\alpha\varkappa, \quad \varkappa_0 = m\alpha,$$

$$E_0 = -m\alpha_0^2 \left(1 + \frac{2D^2}{L^2}\right)^2 + \frac{4e^2D}{\varepsilon L^2}.$$
 (23)

Здесь \varkappa_0 значение вариационного параметра в точке экстремума, E_0 – искомый уровень энергии связанной пары. Таким образом, в рассматриваемой модели биэлектрон гарантировано существует в явно нефизическом пределе $L \ll D$, поскольку первое слагаемое в (23) растет по модулю при малых L как $1/L^4$.

Оценки. Посмотрим теперь, какое отношение могут иметь полученные результаты к реальной ситуации. Конечно, нужны материалы с сильным СОВ и с сильной зависимостью этого взаимодействия от электрического поля. Из данных работ [3, 6, 7] можно вычислить, что в квантовых ямах Bi₂Se₃ постоянная A в соотношении $\alpha = AF_z$ равна $2 \cdot 10^2 \text{ см}^2/(\text{B} \cdot \text{сек})$. Выберем L = 3D, тогда ввиду убывания коэффициентов уравнений (15) как $1/\rho^3$ или $1/\rho^4$ при $\rho \gg D$ аппроксимация их прямоугольным барьером ширины L = 3D представляется достаточно адекватной. Для $\varepsilon = 10, m = 0.1m_e, D = 30$ Å получим $\alpha_0 = 2.5 \cdot 10^7 \text{ см/c}$. Отношение $2\alpha \chi'_{1,2}/\chi_{1,2}$ порядка $2\alpha \varkappa_0$: $(2\alpha_0 D/L^2) \simeq 10.7$ (при оценке нужно восстановить в формулах постоянную Планка: $\varkappa_0 = m\alpha_0/\hbar$).

Как видно, это отношение достаточно велико, что оправдывает пренебрежение членами $V_1\chi_1$ и $V_1\chi_2$ в уравнениях (19). Для энергии связи биэлектрона $\Delta = |E_0 + m\alpha_0^2|$ получается $\Delta \simeq 5.4$ мэВ, размер локализованного состояния $1/\varkappa$ получается порядка 40 Å. Очевидно, что приложение к структуре полевого напряжения (gate voltage) соответствующей полярности усиливает эффект, так что расстояние Dможет быть увеличено.

Все изложенное выше основано на гамильтониане (2), в котором удержан лишь вклад взаимодействия Бычкова–Рашба (так называемый Rashba-term), связанный только с нормальной компонентой электрического поля F_z . Оценим теперь роль тангенциального поля \mathbf{F}_{τ} . Как видно из рисунка, $\mathbf{F}_{\tau}(1)$, действующее на первый электрон, равно $-\mathbf{F}_{\tau}(2)$ и дается выражением

$$\mathbf{F}_{\tau}(1) = \frac{\boldsymbol{\rho}}{\rho} f(\rho) = \frac{\boldsymbol{\rho}}{\rho} \frac{e}{\varepsilon} \left[\frac{1}{\rho^2} - \frac{\rho}{(\rho^2 + D^2)^{3/2}} \right], \quad (24)$$

(напомним: $\rho = \rho_1 - \rho_2$). Часть СОВ, обусловленная полем \mathbf{F}_{τ} , содержит, конечно, вклад заряда изображения (image charge), но в принципе существует и без металлического электрода, и вообще асимметрия структуры в направлении нормали не обязательна. По существу это полный аналог СОВ в атомах. Действительно, выражение $\mathbf{F}_{\tau}[\hat{\mathbf{p}}\boldsymbol{\sigma}]$ вследствие отсутствия у $\hat{\mathbf{p}}$ и \mathbf{F}_{τ} *z*-компонент можно записать в виде $(f(\rho)/\rho)[\rho\hat{\mathbf{p}}]\boldsymbol{\sigma} = (\hbar f(\rho)/\rho)\hat{l}_z\sigma_z$, где $\hat{l}_z = -i\partial/\partial\varphi$ – оператор *z*-проекции орбитального момента. Такая запись вполне аналогична оператору СОВ в атомах

$$V_{SO} = \frac{\hbar^2}{2m^2c^2\rho} \frac{dU(\rho)}{d\rho} \hat{\mathbf{l}}\hat{\mathbf{s}},\tag{25}$$

где $U(\rho)$ – потенциальная энергия электрона; в нашем случае $dU/d\rho = ef(\rho)$. При тех же значениях $m = 0.1m_e$, $\varepsilon = 10$, считая радиус связанного состояния порядка D, получим оценку $|V_{SO}| \sim 10^{-5}$ мэВ, т.е. гораздо меньше энергии связи биэлектрона Δ и глубины эффективной потенциальной ямы $m\alpha^2$. Таким образом, влияние тангенциального поля на формирование биэлектрона пренебрежимо мало.

Итак, в работе показано, что силы электростатического изображения в структуре типа МДП с достаточно тонким диэлектриком могут привести к большому эффективному притяжению между электронами. В результате становится возможным образование связанного состояния пары электронов. Спаривание происходит в триплетном состоянии.

Авторы благодарят В.А. Волкова и И.Ф. Гинзбурга за полезные советы, В.М. Ковалева и М.В. Энтина за обсуждение работы. Работа выполнена при финансовой поддержке РФФИ (грант # 16-02-00565) и программы РАН (проект 0306-2018-0007).

- I. R. Mc Laughlan, E. M. Lievellyn-Samuel, and S. Grampin, J. Physics: Condensed Matter. 16, 6841 (2004).
- N. Nakazawa, N. Takagi, Maki Rawai, H. Ishida, and R. Arafune, Phys. Rev. B 94, 115412 (2016).
- Y. Gindikin and V. Sablikov, Phys. Rev. B 95, 045138 (2017).
- Ж. А. Девизорова, В. А. Волков, Письма в ЖЭТФ 98(2), 101 (2013).
- Ж. А. Девизорова, А. В. Щепетильников, Ю. А. Нефедов, В. А. Волков, И. В. Кукушкин, Письма в ЖЭТФ 100(2), 102 (2014).
- A. Manchon, H.C. Koo, J. Nitta, S.M. Frolov, and R.A. Duine, Nature Materials 14, 871 (2015).
- P. D. C. King, R. C. Hatch, M. Bianki et al. (Collaboration), Phys. Rev. Lett. **107**, 096802 (2011).
- И.С. Градштейн, И.М. Рыжик, Таблицы интегралов, сумм, рядов и произведений, Государственное издательство физико-математической литературы, М. (1962), стр. 981–984.