Об измерении спин-волновой жесткости в гелимагнетике Fe_{0.75}Co_{0.25}Si методом малоуглового рассеяния нейтронов

С. В. Григорьев^{a,b,c}, К. А. Пшеничный^{a,b,c1)}, Е. В. Алтынбаев^{a,b,c}, С.-А. Зигфрид^{d2)}, А. Хайнеманн^{d2)}, Д. Хоннекер^{e2)}, Д. Мензель^{f2)}

^аПетербургский институт ядерной физики, 188300 Гатчина, Россия

^bСанкт-Петербургский государственный университет, 198504 С.-Петербург, Россия

^сИнститут физики высоких давлений им. Л.Ф. Верещагина РАН, 108840 Троицк, Москва, Россия

 $^d {\rm Helmholtz}$ Zentrum Geesthacht, 21502 Geesthacht, Germany

^eInstitute Laue Langevin, 38042 Grenoble, France

^fInstitut für Physik der Kondensierten Materie, 38106 Braunschweig, Germany

Поступила в редакцию 9 апреля 2018 г.

Методом малоуглового рассеяния нейтронов измерена спин-волновая жесткость в геликомагнетике с взаимодействием Дзялошинского–Мория Fe_{0.75}Co_{0.25}Si в состоянии, полностью намагниченном внешним полем. Показано, что дисперсия магнонов в этом состоянии имеет анизотропный вид, поскольку картина рассеяния нейтронов представляет собой два круга для нейтронов с получением и потерей энергии магнона соответственно. Центры кругов смещены на величину переданного импульса, ориентированного вдоль приложенного магнитного поля **H** и равного волновому вектору спирали $\pm \mathbf{k}_s$ нм⁻¹. Радиус кругов напрямую связан с жесткостью спиновых волн магнитной системы, но зависит от величины магнитного поля. Показано, что спин-волновая жесткость *A* для геликомагнетика равна 46.0 мэВ Å² при T = 0 K и слабо (на 20%) убывает с ростом температуры вплоть до критической $T_c = 38$ K.

DOI: 10.7868/S0370274X18100107

В последние годы особый интерес привлекают экзотические спиновые системы, которые формируются в результате баланса между ферромагнитным обменным взаимодействием и антисимметричным обменным взаимодействием Дзялошинского-Мория (ДМ), возникающим из-за отсутствия центра инверсии в кубических кристаллах с пространственной группой $P2_13$ [1, 2]. Именно соотношение между ферромагнитным взаимодействием с константой J и ДМ взаимодействием с константой D определяют величину волнового вектора спиновой спирали или скирмионной решетки $k_s = D/J$ [3–5]. Более того, константы D и J определяют энергетический ландшафт магнитной системы и ее спиновую динамику. Еще одним параметром, характеризующим систему, является величина внешнего магнитного поля H_{C2} , которое необходимо приложить, чтобы превратить спиновую спираль в коллинеарную спиновую структуру (полностью поляризованное состояние). Показано, что разность энергий $g\mu_B H_{C2}$ между полностью поляризованным состоянием и состоянием спирали равна Ak_s^2 , где A = SJ – жесткость спиновой волны, а S – упорядоченный спин [6, 7]. Можно оценить жесткость спиновых волн системы, используя соотношение $Ak_s^2 = g\mu_B H_{C2}$. Такая оценка дает величину жескости для соединения Fe_{0.75}Co_{0.25}Si при T = 0 K, равную примерно 50 мэВ Å² [8].

Спиновая динамика геликомагнетиков с ДМ взаимодействием теоретически исследовалась в работах [6, 10, 9], в которых было показано, что спектр спиновых волн для этих систем является анизотропным: с линейной дисперсией, как в антиферромагнетике, в продольном направлении для $\mathbf{q} \parallel \mathbf{k}_s$ и с квадратичной дисперсией, как в ферромагнетике, в поперечном направлении для $\mathbf{q} \perp \mathbf{k}_s$, при этом $q < k_s$. Еще одной замечательной особенностью магнона в геликомагнетике является его внутренняя многомодовая природа, возникающая в следствии периодического потенциала спиральной структуры.

Интенсивные экспериментальные исследования спин-волновой динамики были предприняты для моносилицида марганца MnSi, архетипического представителя геликомагнетика с ДМ взаимодействием

¹⁾e-mail: pshcyrill@mail.ru

²⁾S.-A. Siegfried, A. Heinemann, D. Honnecker, D. Menzel.

[11–15]. Используя метод трехосной спектроскопии нейтронов, в работах [11, 12] изучался вид дисперсионной кривой магнитных возбуждений в 100 % поляризованной фазе в поле, выше критического H_{C2} . Было показано, что экспериментальные данные при температуре $T = 5 \,\mathrm{K}$ хорошо описываются квадратичной дисперсионной зависимостью $\epsilon_q = Aq^2 + \Delta$ с константой жесткости спиновой волны, равной A = $= 52 \pm 2$ мэВ Å² [11]. Недавние исследования спиновых волн в геликомагнитном состоянии ($H \ll H_{C2}$) продемонстрировали богатое разнообразие спектра возбуждений и его многомодовую структуру [14]. Использование установки неупругого рассеяния нейтронов с высоким разрешением позволило разрешить зонную структуру магнонов в геликомагнетике [15]. Следует отметить, однако, что измерение магнитной динамики геликомагнитных структур методами трехосной спектроскопии нейтронов представляется трудоемкой и времязатратной задачей. Поэтому такие исследования для других соединений гелимагнетиков, таких как $Fe_{1-x}Co_xSi$, еще не проводились.

Предположение, что в намагниченном состоянии гелимагнетик превращается в феромагнетик с соответствующей квадратичной дисперсией [11–13], оказалось неверным. Вид спектра магнонов в гелимагнетиках, намагниченных полем, большим H_{C2} , был впервые получен Катаокой в работе [9]:

$$\epsilon_{\mathbf{q}} = A(\mathbf{q} - \mathbf{k}_s)^2 + g\mu(H - H_{C2}), \qquad (1)$$

где \mathbf{k}_s совпадает с ориентацией внешнего магнитного поля и равно D/J. Знак константы Дзялошинского– Мория определяет направление волнового вектора спирали \mathbf{k}_s , параллельного или антипараллельного относительно направления поля. Зависимость энергии от импульса $\epsilon_{\mathbf{q}}$ похожа на дисперсию в ферромагнетиках, но имеет три важных отличия. Во-первых, единственный минимум кривой смещается от позиции $\mathbf{q} = 0$ в позицию $\mathbf{q} = \mathbf{k}_s$. Во-вторых, знак константы Дзялошинского–Мория определяет предпочтительное направление распространения спиновых волн. И, в третьих, спин-волновая щель, связанная с магнитным полем, уменьшается на величину $g\mu H_{C2}$.

Недавно был предложен и успешно апробирован на примере MnSi экспресс-метод измерения жесткости спиновых волн в гелимагнетиках в полностью поляризованной фазе ($H > H_{C2}$) с помощью малоуглового рассеяния нейтронов (МУРН) [16, 17]. В работе [16] была экспериментально показана асимметричность дисперсии спиновых волн в гелимагнетиках с ДМ взаимодействием (1). Выводы работы [16], полученные на основе эксперимента по малоугловому рассеянию нейтронов, были подтверждены экспериментами с использованием трехосной спектроскопии нейтронов [18].

Изначально метод был развит для измерения спин-волновой жесткости в [19–22]. Суть метода измерения спин-волновой жесткости с помощью МУРН сводится к тому, что при рассеянии нейтронов на спиновых волнах, удовлетворяющих дисперсионному соотношению (1), волновой вектор рассеянного нейтрона \mathbf{k}_f описывает две сферы в обратном пространстве ($\mathbf{q}_x, \mathbf{q}_y, \mathbf{q}_z$) (рис. 1). Это является следствием за-

Рис. 1. Схема малоуглового рассеяния нейтронов на спиновых волнах в геликомагнетике, полностью намагниченном полем

конов сохрания импульса и энергии нейтрона в процессе рассеяния. При этом, из-за того что рассеяние осуществляется под малыми углами, ось обратного пространства \mathbf{q}_z равна неупругой составляющей переданного импульса и пропорциональна переданной энергии ω , а оси $(\mathbf{q}_x, \mathbf{q}_y)$ равны упругой составляющей переданного импульса.

Уравнения сфер, представленных на рис. 1 и выраженных в терминах углов рассеяния (θ_x, θ_y) , имеют вид:

$$(\widetilde{\omega} - \theta_0)^2 + (\theta_x - \theta_B)^2 + \theta_y^2 = \theta_C^2, \tag{2}$$

$$(\widetilde{\omega} + \theta_0)^2 + (\theta_x + \theta_B)^2 + \theta_y^2 = \theta_C^2, \tag{3}$$

где $\tilde{\omega} = \omega/2E$ – переданная нейтрону энергия, θ_B – брэгговский угол рассеяния на спиновой спирали, $\theta_0 = \hbar^2 (2Am_n)^{-1}$ – параметр, связывающий жесткость спиновых волн A с массой нейтрона m_n . Радиус сферы представлен через угол θ_C , квадрат которого выражается через θ_0 и θ_B и линейно зависит от величины внешнего поля H [16]:

$$\theta_C^2(H) = \theta_0^2 - \frac{\theta_0}{E_i}H + \theta_B^2.$$
(4)

В методе малоуглового рассеяния нейтронов интенсивность рассеяния интегрируется по энергии, и поэтому сферы рассеяния проецируются на плоскость (θ_x, θ_y), а детектируемая интенсивность представляет собой два круга, как показано на рис. 1. В случае эксперимента с поляризованными нейтронами, законами сохранения энергии разрешено рассеяние только в одну из сфер в зависимости от направления поляризации нейтронов и знака константы Дзялошинского–Мория системы (см. детальное описание процесса в [16]). В случае рассеяния неполяризованных нейтронов наблюдаются два круга интенсивности.

Центры кругов сдвинуты из начала координат вдоль оси, заданной направлением поля, на угол Брэгга $\pm \theta_B$, а их радиус $\theta_C(H)$ зависит от величины поля (4). Угол θ_C был назван углом отсечки нейтронного рассеяния, а его измеренная в эксперименте величина позволяет решить квадратное уравнение (4) относительно параметра θ_0 , а значит и определить жесткость спиновых волн A.

Эксперимент по малоугловому рассеянию нейтронов проводили на установке D11 в Институте Лауэ-Ланжевена (Гренобль, Франция). Использовали неполяризованный пучок нейтронов с длиной волны $\lambda = 0.6$ нм. Магнитное поле (0.02–1.9 Тл) прикладывали вдоль оси Q_x , т.е. перпендикулярно пучку. В качестве образца использовали монокристалл твердого раствора Fe_{0.75}Co_{0.25}Si. Температура упорядочения в геликоидальную фазу равна $T_c = 38 \,\mathrm{K}$, а критическое поле перехода в полностью намагниченное состояние равно $H_{C2} = 0.18$ Т. Рисунок 2а показывает типичную карту интенсивности малоуглового рассеяния нейтронов при температуре ниже критической T_c и в поле *H* меньше H_{C2} . На рисунке 2а можно видеть брэгговские рефлексы при $\mathbf{Q} = \pm \mathbf{k}_s$, что обусловлено рассеянием нейтронов на спиральной структуре с волновым вектором k_s. Волновой вектор спирали не зависит от температуры и равен $\mathbf{k}_s = 0.19 \, \mathrm{Hm}^{-1}$.

При достижении полем значений, превышающих H_{C2} , упругое рассеяние нейтронов (брэгговский пик) полностью исчезает, а остается лишь неупругое рассеяние, сосредоточенное вокруг $\mathbf{Q} = \pm \mathbf{k}_s$ (рис. 2b). Это рассеяние состоит из сильного диффузного (квазиупругого) рассеяния в окрестности брэгговского пика и круглого пятна, ограниченного углом отсечки θ_C . Диффузное рассеяние при $\mathbf{Q} = \pm \mathbf{k}_s$ оказывается максимальным при $H \sim H_{C2}$ и быстро уменьшается с ростом поля. Круглое пятно с центром в $\mathbf{Q} = \pm \mathbf{k}_s$ может наблюдаться в широком диапазоне полей, вплоть до $H_{\text{off}} = \theta_0 E_i$ (в соответствии с (4)). С ростом температуры интенсивность рассеяния на спиновых волнах растет, растет и величина пятна

Рис. 2. Двумерные карты малоуглового рассеяния нейтронов при T = 20 К: H = 0.12 Т $< H_{C2}$ (a) и H = 0.35 Т $> H_{C2}$ (b) соответственно

рассеяния. На рис. За–с показаны карты интенсивности рассеяния нейтронов при различных тепературах в поле $H = 0.35 \,\mathrm{T}$. Из этих данных можно легко оценить угол отсечки рассеяния нейтронов θ_C .

Для определения угла отсечки θ_C интенсивность рассеяния нейтронов была радиально усреднена по угловому сектору 120° с центром, расположенным в точке $\mathbf{Q} = \pm \mathbf{k}_s$, как показано на рис. 2b. Зависимость интенсивности рассеяния от угла $\theta - \theta_B$ представлена на рис. 4 для разных значенй магнитного поля H = 0.35 и 0.70 T при T = 20 K. Угол отсечки $\theta_C(H)$ получали из экспериментальной зависимости I от $\theta - \theta_B$, аппроксимируя полученные данные следующей функцией: $1/2 - (1/\pi) \arctan(2(\theta - \theta_c)/\delta)$. Положение угла отсечки определялось как центр arctanфункции θ_c . Параметр δ аппроксимирующей функции пропорционален затуханию спиновых волн $\Gamma \approx$ $\approx \delta \cdot E_n$.

Квадрат угла отсечки θ_c^2 показан на вставке на рис. 4 для двух разных значений поля при T = 20 К. Используя выражение (4), можно вычислить значение параметра θ_0 , а следовательно и спин-волновой жесткости А. Предполагается, что жесткость спиновых волн не зависит от поля в диапазоне приложенных полей. Апроксимация показала, что параметр δ ,

Рис. 3. Двумерные карты малоуглового рассеяния нейтронов при H = 0.35 Т: T = 3 K (a), T = 10 K (b), T = 30 K (c) соответственно

связанный с затуханием, мало меняется с ростом поля, а ошибка его определения растет.

Зависимости интенсивности рассеяния нейтронов, радиально усредненной по угловому сектору в 120° с центром в точке $Q = k_s$ при разных температурах в поле H = 0.7 Т, представлены на рис. 5. Видно, что угол отсечки немного растет с температурой, но граница отсечки размывается с ростом температуры. Угол отсечки θ_0 , полученный из (4), а также параметр δ , связанный с затуханием спиновых волн и полученный из аппроксимации, представлены на рис. 6 в зависимости от температуры. Рисунок 6 можно легко интерпретировать, поскольку отношение δ/θ равно отношению затухания спиновой волны к энергии спиновой волны Γ/ϵ при $q \sim k_n \theta_0$. Это отношение равно практически нулю при нулевой температуре,

Рис. 4. Интенсивность рассеяния нейтронов, радиально усредненная вокруг центра в точке $Q = k_s$ по угловому сектору в 120°, при H = 0.35 Т и H = 0.7 Т при температуре T = 20 К. Вставка демонстрирует зависимость квадрата угла отсечки θ_c^2 от магнитного поля H

Рис. 5. Интенсивность рассеяния нейтронов, радиально устредненная по угловому сектору в 120° с центром в точке $Q = k_s$, при T = 10 K, T = 20 K, T = 30 K при поле H = 0.7 T

растет с температурой и сравнимо с единицей в критической области температур $T \to T_c = 38 \, {\rm K}.$

Жесткость спиновых волн, полученная из угла отсечки при разных температурах, представлена на рис. 7. Температурная зависимость A была аппроксимирована степенным законом следующего вида: $A(T) = A_0(1 - c(T/T_C)^z)$, где z = 1.8, $A_0 = 45.98$ мэВ Å² и c = 0.215. Таким образом, показано, что спин-волновая жесткость A слабо меняется с температурой и вблизи критической температуры T_c равна 0.785 от своего значения при T = 0 К.

Рис. 6. Температурная зависимость угла отсечки θ_0 и параметра затухания δ в поле H=0.35 Т. На вставке показано отношение δ/θ_0

Рис. 7. Температурная зависимость жесткости спиновой волны A(T)

Жесткость спиновых волн можно оценить, используя соотношение, связывающее критическое магнитное поле H_{C2} и разность энергий между индуцированной ферромагнитной фазой и гелимагнитным состояниями $g\mu_B H_{C2} = Ak_s^2$ [6, 7]. Подставляя в это выражение значения H_{c2} и k_s , например для T = 20 K, получаем оценку для $A_o \simeq 48.0$ мэВ Å², которая близка к экспериментально полученной величине $A_0 = 43.5$ мэВ Å² для T = 20 K. Можно заключить, что выражение, связывающее H_{C2} и k_s , может быть использовано для оценки жесткости спиновой волны в соединении Fe_{0.75}Co_{0.25}Si.

В заключение отметим, что в работе экспериментально показана справедливость дисперсионного соотношения спиновых волн (1) для

геликомагнетика Fe_{0.75}Co_{0.25}Si с взаимодействием Дзялошинского-Мория в полностью намагниченном состоянии. Несмотря на сходство с ферромагнитной лисперсией, лисперсия гелимагнетика показывает минимум, сдвинутый вдоль оси поля от позиции $\mathbf{q} = 0$ до значения \mathbf{k}_s . Анализ рассеяния позволил установить величину жесткости спиновых волн, которая слабо меняется с температурой и равна $A_0 = 45.98$ мэВ Å² при T = 0 К. Между тем, затухание спиновых волн равно нулю при T = 0 и растет с температурой, приближаясь к величине энергии спиновых волн в области критических температур. Рост затухания спиновых волн с приближением к T_c характерен для ферромагнетиков. Однако в работе показано, что при этом не происходит смягчения спектра (спин-волновая жесткость слабо меняется с температурой). По-видимому, такое поведение спин-волновой жесткости с температурой характерно для гелимагнетиков с ДМ взаимодействием, поскольку оно также наблюдалось для образца MnSi [16]. Более того можно заключить, что разрушение дальнего магнитного порядка (спиновой спирали) в этих системах является результатом конкуренции ферромагнитного обменного взаимодействия и взаимодействия Дзялошинского-Мория, а температурных фазовый переход в них следует признать переходом первого рода.

Авторы благодарят за поддержку Российский Научный Фонд (грант #17-12-01050).

- O. Nakanishia, A. Yanase, A. Hasegawa, and M. Kataoka, Solid State Commun. 35, 995 (1980).
- 2. P.Bak and M.H. Jensen, J. Phys. C 13, L881 (1980).
- S. Muhlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Boni, Science 323, 915 (2009).
- C. Pfleiderer, T. Adams, A. Bauer, W. Biberacher, B. Binz, F. Birkelbach, P. Boni, C. Franz, R. Georgii, M. Janoschek, F. Jonietz, T. Keller, R. Ritz, S. Muhlbauer, W. Munzer, A. Neubauer, B. Pedersen, and A. Rosch, J. Phys.: Cond. Matt. 22, 164207 (2010).
- S. V. Grigoriev, N. M. Potapova, E. V. Moskvin, V. A. Dyadkin, Ch. Dewhurst, and S. V. Maleyev, JETP Lett. 100(3), 238 (2014).
- 6. S.V. Maleyev, Phys. Rev. B 73, 174402 (2006).
- A.N. Bogdanov, U.K. Roessler, and C. Pfleiderer, Physica B 359–361, 1162 (2005).
- S. V. Grigoriev, S. V. Maleyev, V. A. Dyadkin, D. Menzel, J. Schoenes, and H. Eckerlebe, Phys. Rev. B 76, 092407 (2007).
- 9. M. Kataoka, J. Phys. Soc. Jpn. 56(10), 3635 (1987).
- D. Belitz, T. R. Kirkpatrick, and A. Rosch, Phys. Rev. B 73, 054431 (2006).

- Y. Ishikawa, G. Shirane, J. A. Tarvin, and M. Kohgi, Phys. Rev. B 16, 4956 (1977).
- J. A. Tarvin, G. Shirane, Y. Endoh, and Y. Ishikawa, Phys. Rev. B 18, 4815 (1978).
- F. Semadeni, P. Boni, Y. Endoh, B. Roessli, and G. Shirane, Physica B 267–268, 248 (1999).
- M. Janoschek, F. Bernlochner, S. Dunsiger, C. Pfleiderer, P. Boni, B. Roessli, P. Link, and A. Rosch, Phys. Rev. B 81, 214436 (2010).
- M. Kugler, G. Brandl, J. Waizner, M. Janoschek, R. Georgii, A. Bauer, K. Seemann, A. Rosch, C. Pfleiderer, P. Boni, and M. Garst, Phys. Rev. B 115, 097203 (2015).
- S. V. Grigoriev, A.S. Sukhanov, E.V. Altynbaev, S.-A. Siegfried, A. Heinemann, P. Kizhe, and S.V. Maleyev, Phys. Rev. B 92, 220415(R) (2015).
- 17. S.V. Grigoriev, E.V. Altynbaev, S.-A. Siegfried,

K.A. Pschenichnyi, D. Menzel, A. Heinemann, and G. Chaboussant, Phys. Rev. B **97**, 024409 (2018).

- T. J. Sato, D. Okuyama, T. Hong, A. Kikkawa, Y. Taguchi, Taka-hisa Arima, and Y. Tokura, Phys. Rev. B 84, 144420 (2016).
- A.I. Okorokov, V.V. Runov, B.P. Toperverg, A.D. Tretyakov, E.I. Maltsev, I.M. Puzeii, and V.E. Mikhailova, JETP Lett. 43, 503 (1986).
- V. Deriglazov, A. Okorokov, V. Runov, B. Toperverg, R. Kampmann, H. Eckerlebe, W. Schmidt, and W. Lobner, Physica B 181–182, 262 (1992).
- B. P. Toperverg, V. V. Deriglazov, and V. E. Mikhailova, Physica B 183, 326 (1993).
- S. V. Grigoriev, E. V. Altynbayev, H. Eckerlebe, and A. I. Okorokov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 8(5), 1027 (2014).