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Precision measurements of the neutron lifetime en-
able stringent tests of the standard electroweak model
[1] and provide crucial inputs for Big-Bang nucleosyn-
thesis (BBN) calculations [2]. When combined with
measurements of decay correlation coefficients [1], the
neutron lifetime enables the determination of the Vud

element of the Cabbibo-Kobayashi-Maskawa quark mix-
ing matrix, resulting in a complementary unitarity test
to that obtained from superallowed Fermi decays [3].
The neutron lifetime is also one of the key parameters
for determining the yields of light elements in BBN since
the ratio between the free neutron and proton abun-
dances drives the extent of fusion reactions during the
first few minutes of the Universe [2].

The present world average value of the neutron life-
time as quoted by the Particle Data Group (PDG),
τn = (880.2±1.0) s [4], is dominated by results obtained
using ultra-cold neutrons (UCN) in material bottles.
These results, and in particular the most precise of them
[5–7], appear to be systematically lower than those ob-
tained using a neutron beam [8]. This difference of more
than three standard deviations has been the focus of
significant interest [9]. Recent discussions about the ob-
served discrepancy, the experimental methods and their
systematic effects can be found in Refs. [10, 11]. The
importance of the neutron lifetime in particle physics
and cosmology calls for alternative high sensitivity tech-
niques, having other potential sources of systematic ef-
fects. We report here a new measurement of the neutron
lifetime using UCN stored in a magneto-gravitational
trap made of permanent magnets.
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The repulsive force resulting from the interaction
between the neutron magnetic moment and a mag-
netic field gradient can be used for the confinement
of neutrons provided their energies are sufficiently low
[12]. This has been incorporated for the measurement
of the neutron lifetime in various configurations, the
most successful having been a sextupole storage ring
[13], leading to τn = (877 ± 10) s, an Ioffe-Pritchard
three dimensional trap leading to a storage time τS =
(833+74

−63) s [14], and an asymmetric Halbach array which
recently reported a value of the neutron lifetime with
a sub-second uncertainty [6]. We present here a new
measurement of the neutron lifetime using permanent
magnets in a magneto-gravitational trap. A prelimi-
nary result of this experiment has been reported in
Ref. [15].

The experimental setup used in the present measure-
ment was operated at one of the beam positions of the
PF2 UCN source at the Institut Laue-Langevin (ILL).
Technical details about the trap properties and design
have been reported elsewhere [16–18].

There are two possible sources of UCN losses in
magneto-gravitational traps namely, the losses due to
the flip of the neutron magnetic moment relative to the
direction of the magnetic field and the losses due to the
up-scattering of UCNs by the residual gas in the cham-
ber. Neutrons that got their magnetic moment flipped
during storage will reach the magnet walls and be re-
flected, captured or up-scattered. Those which are re-
flected on the walls cannot be reflected by the magnetic
barrier of the shutter, which is smaller than the bar-
rier of the magnets, and will fall through the bottom
aperture towards the detector.
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The other source of UCN losses is due to up-
scattering with the residual gas. In order to estimate
this effect, the variation of the number of stored neu-
trons with the pressure, p, inside the trap volume was
measured. In the presence of losses due to the residual
gas, the number of trapped UCN as a function of time
becomes

ṄT (t) = N0e
−(λS+λpp)t. (1)

For a storage time of 2200 s, it was obtained that
λp = 0.15(4) (s ·Torr)−1. This means that, a relative
variation of 10−3 on λn ≈ λS ≈ 1.1 · 10−3 s−1 corre-
sponds to a pressure level of 10−5 Torr. During the ex-
periments, the pressure in the volume of the magnetic
trap was of the order of 1.1 · 10−6 Torr.

As already mentioned, the surfaces of the magnets
were covered with Fomblin grease. In a separate mea-
surement, the partial pressure of Fomblin vapor was in-
vestigated with a quadruple mass spectrometer [19]. It
was shown that, at the pressure used during the mea-
surements, the partial pressure of Fomblin vapor is at
the level of 2 · 10−9 Torr and its effect can be neglected
at the current level of precision.

In summary, the result from this analysis can be
written as

τn = (878.3± 1.6stat ± 1.0sys) s (2)

It should be recalled that the systematic uncertainty in
Eq. (2) has in fact a statistical origin so that the un-
certainties are to be added in quadrature. The value
is consistent with the current PDG average [4], which
includes a scale factor of 1.9, and with other results ob-
tained using stored UCNs but is at variance with the
result obtained using a neutron beam [8].
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