Самосогласованные расчеты квадрупольных моментов первых 3⁻-состояний в изотопах Sn и Pb

 $C. П. Камерджиев^{+1}, Д. А. Войтенков^*, Э. Е. Саперштейн^{+\times}, С. В. Толоконников^{+\circ}$

⁺Национальный Исследовательский Центр "Курчатовский Институт", 123182 Москва, Россия

*Научно-исследовательский институт конструкционных материалов на основе графита "НИИграфит", 111524 Москва, Россия

 $^{\times}$ Национальный исследовательский ядерный университет "МИФИ", 115409 Москва, Россия

^о Московский физико-технический институт, 141700 Долгопрудный, Россия

Поступила в редакцию 23 мая 2018 г. После переработки 22 июня 2018 г.

Самосогласованный метод изучения ангармонических эффектов, основанный на квантовой теории многих тел, впервые применяется для расчета квадрупольных моментов первых 3⁻-состояний в изотопах Sn и Pb, включая дважды магические ¹⁰⁰Sn, ¹³²Sn и ²⁰⁸Pb. Самосогласование между средним ядерным полем и эффективным взаимодействием основано на использовании метода энергетического функционала плотности с известными параметрами функционала Фаянса. Это позволило достаточно надежно предсказать квадрупольные моменты первых 3⁻-состояний в изотопах со спариванием и объяснить имеющийся эксперимент для ²⁰⁸Pb. Показано, что новые (трехквазичастичные) корреляции в основном состоянии объясняют немногим более половины эффекта, а остальная часть объясняется эф-

DOI: 10.1134/S0370274X18150018

Изучение ангармонических эффектов в ядерной физике низких энергий имеет длительную и плодотворную историю [1–5]. В последнее время интерес к этим вопросам заметно увеличился в связи с успехами эксперимента и поисками эффектов смешанной симметрии в спектрах низкоэнергетических уровней [6]. Существуют также астрофизические цели в изучении низколежащих возбуждений в нестабильных ядрах, включая ядра с новыми магическими числами [7]. Одной из самых обсуждаемых задач была и остается задача о расчетах статических электромагнитных моментов первых одно-фононных 2⁺ и 3⁻уровней сферических ядер, в частности, квадрупольных моментов (в дальнейшем $Q(2_1^+), Q(3_1^-))$, прежде всего $Q(3_1^-)$ в дважды-магическом ²⁰⁸Pb. Специальное отношение к $Q(3_1^-)$ в ²⁰⁸ Pb объясняется уникальными свойствами спектра низколежащих уровней в ²⁰⁸Pb: уровень $3_1^-, E = 2.615$ МэВ является самым коллективным и первым возбужденным состоянием в то время, как в остальных ядрах с А > 40, включая дважды-магическое ядро ¹³²Sn, первым возбужденным состоянием являются 2⁺-уровни. Задача расчета $Q(2_1^+)$ успешно решалась в рамках как несамосогласованных, так и самосогласованных подходов, см. ссылки в [4]. В рамках несамосогласованной квазичастично-фононной модели $Q(3_1^-)$ рассчитывались в работах [8, 9]. Для $Q(2_1^+)$ имеются экспериментальные данные не только в ²⁰⁸Pb, где спаривание отсутствует, но и в ядрах со спариванием. Для $Q(3_1^-)$ экспериментальные данные в сферических ядрах отсутствуют [10, 11], кроме ²⁰⁸Pb. По всем этим причинам для расчета значений $Q(3_1^-)$ необходимо использовать подход с достаточно большой предсказательной силой, в котором отсутствуют какие-либо подгоночные параметры, что позволит надежно предсказать величины $Q(3_1^-)$ в ядрах со спариванием.

Последовательный метод изучения ангармонических эффектов в магических ядрах, основанный на факте существования параметра малости (см. [1]) для величины g_s^2 , где g_s – обезразмеренная амплитуда рождения низкоэнергетического фонона в состоянии s, был развит в работах [12, 13]. Обычно это называют g^2 -приближением, но при этом подчеркивается и реализуется необходимость учета *всех* g^2 членов. Последнее осуществляется учетом эффектов так называемого фононного тэдпола ("tadpole"), которые необходимо учитывать в поправках к среднему полю. Например, для магических ядер эта поправка к массовому оператору имеет вид, представленный на рис. 1, где второе слагаемое есть фононный тэдпол,

¹⁾e-mail: kamerdzhiev sp@nrcki.ru

Рис. 1. g² поправки к массовому оператору в магических ядрах. Кружки с одной волнистой линией в первом слагаемом – амплитуды рождения фонона g. Второе слагаемое – фононный тэдпол ("tadpole")

который аналитически представляет собой свертку D-функции фонона с величиной $\delta_L g_L$, где $\delta_L g_L$ есть вариация амплитуды рождения фонона с моментом L в поле другого фонона (подробнее см. [4, 13]). Величина $\delta_L g_L$ удовлетворяет интегральному уравнению с двумя свободными членами, содержащими q^2 , которое учитывает все q²-члены. При этом величина q_s описывается в рамках обычного (квазичастичного) метода хаотических фаз (Q)RPA, точнее, теории конечных Ферми-систем (ТКФС) [14]. Другой важный ингредиент подхода - ядерная поляризуемость, обусловленная межнуклонным взаимодействием, - также рассматривается в рамках ТКФС. Таким образом, рассматриваемый нами подход представляет собой естественное развитие ТКФС, которое обобщает этот подход на учет самосогласования между самосогласованным полем ядра и эффективным взаимодействием и позволяет рассматривать ангармонические эффекты без введения новых параметров.

В настоящей работе мы рассчитаем $Q(3_1^-)$ в изотопах Sn и Pb, включая дважды-магические ¹⁰⁰Sn, ¹³²Sn и ²⁰⁸Pb, в рамках самосогласованного подхода, в котором самосогласование между средним ядерным полем и эффективным взаимодействием основано на использовании метода энергетического функционала плотности (ЭФП) Фаянса [15, 16], который можно рассматривать как вариант ЭФП самосогласованной ТКФС, с известными параметрами функционала DF3-а [17]. Такой функционал предназначен для расчетов в ядрах со спариванием. Главное его отличие от функционала Скирма – дробно-линейная зависимость от ядерной плотности и использование эффективной массы нуклона $m^* = m$ (подробнее см. обзор [18]). Самосогласованные расчеты $Q(3_1^{-})$ выполняются впервые.

Ранее в рамках похожего метода рассчитывались $Q(2_1^+)$ [4] и вероятности E1 и E2 переходов между однофононными состояниями в ¹³²Sn и ²⁰⁸Pb [5]. Было получено, что наблюдаемые величины для $Q(2_1^+)$ и вероятностей E1 и E2 переходов объясняются двумя эффектами: поляризуемостью ядра, которая описывалась в рамках самосогласованной ТКФС [13], и так называемыми трехквазичастичными корреля-

циями в основном состоянии (КОС). На языке диаграм Фейнмана эти КОС описываются так называемыми графиками, идущими назад ("backward going graphs"), но, в отличие от хорошо известных КОС RPA, они мало изучены и дают большой вклад [4]. Как оказалось, для $Q(2_1^+)$ указанные два эффекта складываются, но для вероятностей E1-переходов они сильно компенсируют друг друга [5], в обоих случаях достаточно хорошо описывая имеющиеся экспериментальные данные.

Для ядер со спариванием, для которых в полумагических ядрах существует такой же параметр малости [19], следует рассматривать 8 графиков, содержащих интегралы от трех функций Грина $G, G^{h}, F^{(1)}, F^{(2)}$ [14], если пренебречь эффективными полями $d^{(1)}$ и $d^{(2)}$, описывающими изменение спаривательной щели во внешнем поле (они дают малый вклад [4, 20]). Окончательное выражение для матричного элемента M_{LL} , который связан с квадрупольным моментом возбужденного состояния L соотношением $Q_L = \sqrt{\frac{16\pi}{5}} M_{LL}$, соответствует "треугольным" диаграммам и слагаемым с $\delta_L F$ и $\delta_L F^{\xi}$, часть из которых представлена на рис. 2. Слагаемые с $\delta_L F$ и $\delta_L F^{\xi}$ рассчитывались в [4] для задачи $Q(2_1^+)$. Они оказались малыми. Поэтому мы их в данной работе не учитываем. Тогда формула для M_{LL} имеет вид:

$$M_{LL} = \sum_{123} (-1)^{L+1} \begin{pmatrix} I & L & L \\ 0 & L & -L \end{pmatrix} \begin{cases} I & L & L \\ j_3 & j_2 & j_1 \end{cases} \times \\ \times <1 \parallel V \parallel 2 > <3 \parallel g_L \parallel 1 > <2 \parallel g_L \parallel 3 > \sum_{i=1}^{8} A_{123}^{(i) \text{pair}}, (1)$$

где

$$\sum_{i=1}^{8} A_{123}^{(i)\text{pair}} = \\ = \left(\frac{1}{(\omega_L + E_{13})(\omega_L + E_{23})} + \frac{1}{(\omega_L - E_{13})(\omega_L - E_{23})}\right) \times \\ \times \left[u_1^2 u_2^2 v_3^2 - v_1^2 v_2^2 u_3^2 + \frac{\Delta_1 \Delta_2}{4E_1 E_2} (u_3^2 - v_3^2) + \right. \\ \left. + \frac{\Delta_1 \Delta_3}{4E_1 E_3} (u_2^2 - v_2^2) + \frac{\Delta_2 \Delta_3}{4E_2 E_3} (u_1^2 - v_1^2) \right] + \\ \left. + \frac{1}{E_{12}} \left[\frac{2E_{23} (u_1^2 u_3^2 v_2^2 - v_1^2 v_3^2 u_2^2)}{E_{23}^2 - \omega_L^2} + \frac{2E_{13} (u_2^2 u_3^2 v_1^2 - v_3^2 v_2^2 u_1^2)}{E_{13}^2 - \omega_L^2} - \\ \left. - \left(\frac{\Delta_1 \Delta_2}{2E_1 E_2} (u_3^2 - v_3^2) + \frac{\Delta_1 \Delta_3}{2E_1 E_3} (u_2^2 - v_2^2) + \right. \right]$$

$$+ \frac{\Delta_2 \Delta_3}{2E_2 E_3} (u_1^2 - v_1^2) \left(\frac{E_{13}}{E_{13}^2 - \omega_L^2} + \frac{E_{23}}{E_{23}^2 - \omega_L^2} \right) \right].$$
(2)
Письма в ЖЭТФ том 108 вып. 3–4 2018

Рис. 2. Матричные элементы $M_{LL}^{(1)}$ и $M_{LL}^{(5)}$ ядер со спариванием

Здесь $E_{12} = E_1 + E_2, E_1 = \sqrt{(\varepsilon_1 - \mu)^2 + \Delta_1^2}$ и нижние индексы $1 \equiv (n_1, l_1, j_1)$ (сферические ядра) – наборы одночастичных квантовых чисел. V – эффективное поле, которое определяет (в нашем случае, квадрупольную) поляризуемость ядра и подчиняется уравнению ТКФС [14] $V = e_q V^0 + FAV, e_q^p = 1, e_q^n = 0.$ g_L – амплитуда рождения фонона с моментом L и энергией ω_s , которая подчиняется соответствующему однородному уравнению в ТКФС. Вторая половина формулы (2) с множителем $\frac{1}{E_{12}}$ дает трехквазичастичные КОС.

Чтобы пояснить смысл трехзквазичастичных КОС, рассмотрим предел $\Delta_1 = 0$, т.е. магические ядра. Тогда из восьми слагаемых в выражении (2) остаются два, которые соответствуют двум "треугольникам", один – это первый треугольник на рис. 2, другой – с обратным направлением стрелок

$$A_{123}^{1} + A_{123}^{2} = b_{123} \times \\ \times \left(\frac{1}{(\varepsilon_{31} - \omega_{s})(\varepsilon_{32} - \omega_{s})} + \frac{1}{(\varepsilon_{31} + \omega_{s})(\varepsilon_{32} + \omega_{s})}\right) + \\ + \frac{2}{\varepsilon_{12}} \left[b_{231}\frac{\varepsilon_{13}}{\varepsilon_{13}^{2} - \omega_{s}^{2}} + b_{132}\frac{\varepsilon_{13}}{\varepsilon_{13}^{2} - \omega_{s}^{2}}\right],$$
(3)

где $b_{123} = [(1-n_1)(1-n_2)n_3 - n_1n_2(1-n_3)], \varepsilon_{12} = \varepsilon_1 - \varepsilon_2, \varepsilon_1$ и n_1 - одночастичные энергии и числа заполнения уровня с индексом 1.

Часть этого выражения, которая содержит круглые скобки, получается в результате взятия следующих четырех интегралов, которые мы запишем в символическом виде:

$$\int [G_1^p G_2^p G_3^h + G_1^h G_2^h G_3^p](\omega_s) d\varepsilon + \\ + \int [G_1^p G_2^p G_3^h + G_1^h G_2^h G_3^p](-\omega_s) d\varepsilon, \qquad (4)$$

где G^p и G^h – частичная и дырочная составляющие одночастичной функции Грина

$$G_1(\varepsilon) \equiv G_1^p + G_1^h = \frac{1 - n_1}{\varepsilon - \varepsilon_1 + i\gamma} + \frac{n_1}{\varepsilon - \varepsilon_1 - i\gamma}.$$
 (5)

Письма в ЖЭТФ том 108 вып. 3-4 2018

Эта часть выражения (3), как видно из (4), характерна тем, что обе частицы 1, 2 в вершине V_{12} находятся либо выше, либо ниже поверхности Ферми. Для сравнения с обычным методом хаотических фаз (RPA): в формализме метода функций Грина соответствующие интегралы, которые входят в уравнение для вершины V в ТКФС, имеют вид $\int [G_1^p G_2^h +$ $G_1^h G_2^p] d\varepsilon$, т.е. частица и дырка для магических ядер всегда находятся по разные стороны от поверхности Ферми. Указанная часть выражения (3) совпадает с пределом $\Delta_1 = 0$ для одинаковых фононов $\lambda_1 = \lambda_2$ в формуле (9) работы [3]. Остальная часть выражения (3) с квадратной скобкой получается взятием оставшихся восьми интегралов вида (4), в которые G_1 и G_2 из произведений трех функций Грина всегда входят в виде $G_1^p G_2^h$ или $G_1^p G_2^h$, т.е. частицы 1 и 2 находятся по разные стороны от поверхности Ферми. Эта часть соответствует графикам "идущим назад", или КОС, она отсутствует в указанном пределе формулы (9) [3]. Для динамического случая (переданная энергия $\omega \neq 0$) первая часть в (3) не зависит от энергии, тогда как вторая часть зависит от ω . Как мы увидим, для 208 Pb эта часть составляет 55%, т.е., в отличие от обычных двухквазичастичных КОС RPA, их вклад весьма значителен.

Результаты самосогласованных расчетов характеристик первых 3⁻ фононов в изотопах Sn и Pb приведены в табл. 1 и 2. Эти расчеты выполнялись в той же схеме (самосогласованная ТКФС с параметрами функционала DF3-а), что и в работе [20] для 2_1^+ -фононов, и, по-видимому, впервые в таком подходе для такого большого количества ядер. Как видно, получено достаточно разумное описание энергий первых 3⁻-фононов и, что особенно важно для нашей задачи расчета характеристик пропорциональных g^2 , хорошее описание приведенных вероятностей B(E3).

Расчеты величин $Q(3_1^-)$ выполнялись по формулам (1), (2) для I = 2, L = 3 с самосогласованными одночастичными волновыми функциями, полученными с функционалом Фаянса DF3-а. Вели-

 ω_3^{\exp} B(E3) $B(E3)^{\exp}$ Α ω_3 100 5.6210.109102 3.959 0.0565104 3.643 0.0760 106 3.457 0.0901 108 3.3500.0959 110 3.282[2.459]0.0996 112 3.2210.102 2.3550.087(12)114 3.1572.2750.1060.100(12)116 2.2660.1063.1000.127(17)0.106 0.115(10)118 3.0722.3251203.069 2.4010.1120.115(15)1223.112 2.4930.107 0.092(10)1243.208 2.6140.1030.073(10)3.346 126 0.0973128 3.5470.08701303.8220.07841324.572[4.351]0.129

Таблица 1. Энерги
и ω_3 (МэВ) и вероятности $B(E3)\uparrow(e^2b^3)$ возбуждения состояни
й 3^-_1 в четных изотопах Sn. Экспериментальные данные взяты из [21]

Таблица 2. Энергии ω_3 (МэВ) и вероятности $B(E3) \uparrow (e^2 b^3)$ возбуждения состояний 3_1^- в четных изотопах Pb. Экспериментальные данные взяты из [21]

А	ω_3	$\omega_3^{ m exp}$	B(E3)	$B(E3)^{\exp}$
190	2.058	_	0.583	-
192	2.160	1	0.557	-
194	2.272	1	0.565	-
196	2.389	1	0.562	-
198	2.506	1	0.566	-
200	2.620	1	0.583	-
202	2.704	1	0.612	-
204	2.785	2.618	0.629	0.66(4)
206	2.839	2.648	0.653	0.65(4)
208	2.710	2.615	0.723	0.611(9)
210	2.587	1.871	0.140	0.40(10)
212	1.788	-	0.697	-

чины V и g, описывающие, соответственно, квадрупольную поляризуемость ядра и амплитуду рождения 3_1^- -фонона, рассчитывались в координатном представлении с теми же самыми параметрами DF3а (подробнее см. в [5, 4]). Чтобы обеспечить надежный учет одночастичного континуума, использовался ящик с радиусом R = 16 fm. Поскольку сумма в выражении (2) не когерентна, результаты проверялись на чувствительность к границе верхнего суммирования. Было найдено, что, как и в [4], $E_{\rm max} = 100$ МэВ обеспечивает точность в 1%. В отличие от [5] для описания фононов в (2) использовалось точное значение g, т.е. приближение Бора–Моттельсона в нашей работе не использовалось.

Результаты расчетов величин $Q(3_1^-)$ приведены в табл. 3 и на рис. 3, 4. В колонке Q_{tot} приведены

Рис. 3. (Цветной онлайн) Квадрупольные моменты первых
 3^- состояний в четных изотопах Pb

Рис. 4. (Цветной онлайн) Квадрупольные моменты первы
х 3^- состояний в четных изотопах Sn

окончательные результаты. Колонка, обозначенная как Q(KOC=0) дает результаты без новых, т.е. трехквазичастичных корреляций в основном состоянии. Разность $[Q_{\text{tot}} - Q(\text{KOC}=0)]$ дает вклад эффектов КОС, которые, как можно видеть, составляют 50– 60% от Q_{tot} . В правой колонке ($V = e_q V^0$, KOC = 0) даны результаты без учета КОС и поляризуемости ядра, определяемой эффективным взаимодействия между нуклонами. Эти величины в среднем более чем на порядок меньше, чем Q_{tot} . Поэтому определяющий вклад в величину Q(KOC = 0) дает эффект квадрупольной поляризуемости ядра, который

1	2	3	4	5	6
Ядро	Q^{n}	Q^{p}	$Q_{ m tot}$	$Q \ ({ m KOC}=0)$	$egin{array}{c} Q \ ({ m KOC}=0, \ V=e_{ m q}V^0) \end{array}$
¹⁰⁰ Sn	-0.11	-0.13	-0.24	-0.09	-0.022
102 Sn	-0.14	-0.14	-0.28	-0.12	-0.015
104 Sn	-0.26	-0.24	-0.50	-0.22	-0.019
106 Sn	-0.36	-0.33	-0.69	-0.30	-0.022
108 Sn	-0.41	-0.42	-0.82	-0.36	-0.024
110 Sn	-0.44	-0.48	-0.92	-0.39	-0.023
^{112}Sn	-0.44	-0.51	-0.95	-0.40	-0.024
114 Sn	-0.41	-0.50	-0.91	-0.37	-0.024
^{116}Sn	-0.33	-0.46	-0.79	-0.32	-0.024
118 Sn	-0.24	-0.43	-0.67	-0.25	-0.024
120 Sn	-0.15	-0.42	-0.57	-0.21	-0.025
122 Sn	-0.05	-0.37	-0.42	-0.15	-0.024
124 Sn	0.02	-0.31	-0.29	-0.10	-0.023
^{126}Sn	0.05	-0.26	-0.21	-0.07	-0.022
^{128}Sn	0.04	-0.20	-0.15	-0.05	-0.021
130 Sn	0.01	-0.14	-0.12	-0.04	-0.020
^{132}Sn	-0.09	-0.16	-0.26	-0.12	-0.042
¹⁹⁰ Pb	-0.33	-1.05	-1.38	-0.47	-0.043
¹⁹² Pb	-0.31	-1.14	-1.45	-0.49	-0.043
¹⁹⁴ Pb	-0.33	-1.26	-1.59	-0.53	-0.045
¹⁹⁶ Pb	-0.36	-1.27	-1.62	-0.56	-0.047
¹⁹⁸ Pb	-0.41	-1.19	-1.60	-0.56	-0.050
²⁰⁰ Pb	-0.45	-1.04	-1.49	-0.55	-0.054
²⁰² Pb	-0.47	-0.89	-1.37	-0.53	-0.061
204 Pb	-0.41	-0.67	-1.08	-0.44	-0.067
²⁰⁶ Pb	-0.22	-0.34	-0.55	-0.24	-0.074
²⁰⁸ Pb	-0.13	-0.27	-0.40	-0.18	-0.074
²¹⁰ Pb	-0.11	-0.11	-0.22	-0.10	-0.016
212 Pb	-0.33	-0.38	-0.71	-0.29	-0.052

Таблица 3. Квадрупольные моменты Q(eb) первых 3⁻ состояний в изотопах Sn и Pb. Колонки 2 и 3 дают Q_n и Q_p – вклад нейтронной и протонной составляющей в треугольную диаграмму. В колонке 4 представлены окончательные результаты Q_{tot} , колонка 5 – результаты без новых КОС, колонка 6 – без новых КОС и поляризуемости ядра

составляет примерно 40–50 % от Q_{tot} . Таким образом величина $Q(3_1^-)$ в наших расчетах определяется двумя эффектами – эффектом КОС и поляризуемости ядра, которые имеют одинаковые знаки. Как говорилось выше, для случая E1-переходов в дваждымагических ядрах ¹³²Sn ²⁰⁸Pb [5] эти эффекты сильно компенсируют друг друга. Для ²⁰⁸Pb, для которого имеется единственное экспериментальное значение $Q(3_1^-) = -0.35 \pm 0.15eb$, мы получили величину $Q(3_1^-) = -0.40eb$, в которой вклад КОС составляет [-0.40 - (-0.18)] = -0.22eb (55%), а вклад поляризуемости [-0.18 - (-0.074)] = -0.17eb (43%). Почти все значения протонной и нейтронных составляющих отрицательны, кроме ^{124,126,128}Sn, т.е. в конце оболочки N = 82, где протонная и нейтронная составляющие имеют противоположные знаки и частично компенсируют друг друга, обеспечивая уменьшение величины Q_{tot} . При этом рассчитанные величины $Q(3_1^-)$ в полу-магических ядрах превышают $Q(3_1^-)$ в магическом ядре ²⁰⁸Pb в 2–3 раза для изотопов Pb (кроме ²¹⁰Pb, ²⁰⁶Pb) и в 3–4 раза для изотопов Sn (кроме ¹⁰²Sn). Это примерно соответствует качественным предположениям о величинах $Q(3_1^-)$ в [1] (с. 501), хотя для изученных полу-магических ядер различия на порядок нет. Указанные (в скобках) исключения могут быть связаны со спецификой характеристик $3_1^$ уровней в ядрах "дважды-маг ± 2 нуклона" и требуют дальнейшего изучения.

В заключение, в работе рассчитаны величины $Q(3_1^-)$ в изотопах Sn и Pb. Они предсказаны во всех ядрах, кроме ²⁰⁸Pb, для которого получено согласие с экспериментом в пределах экспериментальных ошибок. Использован самосогласованный подход, основанный на методе энергетического функционала плотности с известными и апробированными параметрами DF3-а. Аналогичный подход был ранее использован для величин $Q(2_1^+)$ в тех же ядрах [4], при этом было получено согласие с большинством имеющихся экспериментальных данных. Все это позволяет надеяться, что полученные результаты для $Q(3_1^-)$ являются достаточно надежными. Как и в работах [4, 5], величина изучаемых характеристик определется двумя составляющими - новыми, т.е трехквазичастичными КОС, которые фактически определяются эффектами тэдпола, и ядерной поляризуемостью. По сравнению с $Q(2_1^+)$ все рассчитанные значения $Q(3_1^-)$ отрицательны и по модулю в несколько раз больше, чем $Q(2_1^+)$ в тех же ядрах, что объясняется значительно большей коллективностью 3₁фононов. Как и для $Q(2_1^+)$, поведение функции Q(A)нерегулярно - максимальное значение квадрупольного момента появляется в середине нейтронной оболочки, особенно для Sn. Предсказанные результаты для полумагических ядер в целом подтверждают качественные предположения в [1] о величинах $Q(3_1^-)$. Можно думать, что подобное поведение может быть и в других изотопических цепочках, по крайней мере, в полу-магических ядрах. Представляется весьма интересным экспериментальная проверка полученных результатов, тем более что в них сильно проявляется новый эффект – трехквазичастичные КОС.

160

Работа поддержана грантами РНФ #16-12-10155 (вторая половина работы – табл. 3, рис. 3, 4) и 16-12-10161 (первая половина работы, табл. 1, 2). Частичная поддержка также осуществлялась грантом РФФИ 16-02-00228-а. Расчеты выполнены частично на Вычислительном Комплексе Национального Исследовательского Центра "Курчатовский Институт". ЭЕС был также поддержан Проектом "Российское образование мирового класса" Научного Исследовательского Ядерного Университета Московского Инженерно-Физического Института, согласно Контракту Министерства образования и науки Российской Федерации #02. A03.21.0005.

- 1. О. Бор, Б. Моттельсон, *Структура атомного ядра*, Мир, М. (1977), т. 2.
- 2. P. Ring and J. Speth, Nucl. Phys. A 235, 315 (1974).
- V.Yu. Ponomarev, Ch. Stoyanov, N. Tsoneva, and M. Grinberg, Nucl. Phys. A 635, 470 (1998).
- D. Voitenkov, S. Kamerdzhiev, S. Krewald, E. E. Saperstein, and S. V. Tolokonnikov, Phys. Rev. C 85, 054319 (2012).
- С. П. Kamerdzhiev, Д. Ф. Войтенков, Э. Е. Саперштейн, С. В. Толоконников, М. И. Шитов, Письма в ЖЭТФ **106**, 132 (2017).
- N. Lo. Iudice, V. Yu. Ponomarev, Ch. Stoyanov, A. V. Sushkov, and V. V. Voronov, J. Phys. G: Nucl. Part. Phys. **39**, 043101 (2012).
- T. Otsuka, T. Suzuki, M. Honma, Y. Utsuno, N. Tsunoda, K. Tsukiyama, and M. Hjorth-Jensen, Phys. Rev. Lett. **104**, 012501 (2010).
- А. И. Вдовин, Ч. Стоянов, Изв. Акад. Наук. СССР, Сер. Физ. 38, 2598 (1974) [Bull. Akad. Sci. USSR, Phys. Ser. 38, 2598 (1974)].
- А.И. Вдовин, Ч. Стоянов, Изв. Акад. Наук. СССР, Сер. Физ.38, 2604 (1974) [Bull. Akad. Sci. USSR, Phys. Ser. 38, 2604 (1974)].
- 10. http://www.nndc.bnl.gov/ensdf/.
- N. J. Stone, Atomic Data and Nuclear Data Tables 90 75 (2005).
- В. А. Ходель, ЯФ 24, 704 (1976) [Sov. J. Nucl. Phys. 24, 367 (1976)].
- V. A. Khodel and E. E. Saperstein, Phys. Rep. 92, 183, 1982.
- A. Б. Мигдал, Теория конечных ферми-систем и свойства атомных ядер, Наука, М. (1965)
 [A. B. Migdal, Theory of finite fermi-systems and applications to atomic nuclei, Wiley, N.Y. (1967)].
- A. B. Смирнов, С. В. Толоконников, С. А. Фаянс, ЯΦ 48, 1661 (1988) [Sov. J. Nucl. Phys. 48, 995 (1988)].
- S.A. Fayans, S.V. Tolokonnikov, E.L. Trykov, and D. Zawischa, Nucl. Phys. A 676, 49 (2000).
- С. В. Толоконников, Э. Е. Саперштейн, ЯФ 73, 1731 (2010) [Phys. Atom. Nucl. 73, 1684 (2010)].
- Э. Е. Саперштейн, С. В. Толоконников, ЯФ 79, 703 (2016) [Phys. Atom. Nucl. 79, 703 (2016)].
- А.В. Авдеенков, С.П. Камерджиев, ЯФ 62, 563 (1999) [Phys. Atom. Nucl. 62, 563 (1999)].
- S. V. Tolokonnikov, S. Kamerdzhiev, D. Voytenkov, S. Krewald, and E. E. Saperstein, Phys. Rev. C 84, 064324 (2011).
- R. H. Spear, Atomic Data and Nuclear Data Tadles 42, 55 (1989).