Поверхностные поляритоны в многослойных структурах GaAs/CdTe/PbTe

 $H. H. Новикова^{+1}$, $B. A. Яковлев^{+}$, $И. В. Кучеренко^{*}$, $\Gamma. Карчевски^{\times 2}$, $C. Чуснутдинов^{\times 2}$

+Институт Спектроскопии РАН, 108840 Троицк, Москва, Россия

*Физический институт им. П.Н. Лебедева РАН, 119991 Москва, Россия

X Institute of Physics, Polish Academy of Sciences, PL-02668 Warsaw, Poland

Поступила в редакцию 29 августа 2018 г.

Измерены инфракрасные спектры отражения и нарушенного полного внутреннего отражения тонких пленок PbTe, осажденных методом молекулярно-лучевой эпитаксии на подложку GaAs/CdTe. С помощью дисперсионного анализа определены для каждого из слоев параметры: высокочастотная диэлектрическая проницаемость, частоты поперечных оптических фононов и их силы осцилляторов, плазменные частоты и частоты соударений плазмы. В спектрах нарушенного полного внутреннего отражения, полученных с использованием кремниевой и алмазной призм, наблюдались поверхностные фононные, плазмон-фононные поляритоны. Построены кривые дисперсии поверхностных поляритонов.

DOI: 10.1134/S0370274X18190074

1. Введение. Недавно было доказано, что при достаточно высокой концентрации олова твердые растворы типа IV-VI, такие как $Pb_{1-x}Sn_xTe$ и $Pb_{1-x}Sn_xSe$, становятся топологическими изоляторами [1, 2]. Важно отметить, что конус Дирака на поверхности этих соединений возникает в тех сплавах, в которых энергетический спектр в объеме пленки в L-точке зоны Бриллюэна инвертирован: волновые функции электронов зоны проводимости имеют симметрию L_6^+ , а дырки валентной зоны – L_6^- . Это открытие вызвало возобновление интереса к этой группе материалов. Однако, в течение многих лет интерес к узкозонным полупроводникам типа IV-VI (PbTe, PbSe, PbS) и тройным сплавам на их основе был, главным образом, связан с созданием таких приборов, как генераторы термоэлектричества [3, 4], инфракрасные (ИК) источники света, включая лазеры [5,6], и детекторы [7,8]. Полупроводники IV-VI успешно используют для создания ИК детекторов, так как в отличие от узкозонных полупроводников II-VI и III-V валентная зона этих полупроводников не вырождена, поэтому безызлучательная Оже-рекомбинация значительно меньше, чем в полупроводниках II-VI и III-V [9].

Зонная структура солей свинца имеет другие уникальные свойства, такие как узкая и прямая запрещенная зона с экстремумами, локализованными в четырех эквивалентных точках зоны Бриллюэна, зона проводимости и валентная зона симметричны, эффективные массы электронов и дырок малы и близки по величине.

В данной работе мы исследуем оптическими методами инфракрасное отражение при угле падения света близком к нормальному и нарушенное полное внутреннее отражение (НПВО) [10] пленок РbТе высокого качества, выращенных методом молекулярной лучевой эпитаксии на гибридных подложках GaAs/CdTe(100). Постоянные решеток CdTe и PbTe близки по величине: 6.48 и 6.50 A, соответственно. Концентрация носителей в пленках PbTe составляла $10^{16} \, cm^{-3}$ при 300 K.

Как нами будет показано, в такой структуре возникают поверхностные поляритоны [11], информация о которых, насколько нам известно, отсутствует.

В нашей работе [12], выполненной на пленках GaAs/ZnTe/PbSnSe, были теоретически рассчитаны интерфейсные моды, возникающие между слоями исследуемой структуры. Для экспериментального исследования поверхностных поляритонов в структурах GaAs/CdTe/PbTe был использован метод НПВО.

2. Образцы и методика измерений. Были исследованы два вида структур, выращенных методом молекулярно-лучевой эпитаксии. В первом случае (образцы 092 и 096) на подложку GaAs(100) был осажден буферный слой CdTe толщиной порядка 800 и 600 нм соответственно. Поверх буферного слоя эпи-

¹⁾ e-mail: novik@isan.troitsk.ru

²⁾G. Karczewski, S. Chusnutdinow.

таксиально осаждалась пленка PbTe толщиной около 80 нм. Буферный слой подбирался таким образом, чтобы постоянные решеток пленки и буферного слоя были согласованы. Во втором случае на гибридной подложке GaAs/CdTe выращивалась сверхрешетка CdTe/PbTe с 25 периодами. Толщина слоев PbTe составляла примерно 7 нм (образец 023) [13].

Измерения ИК спектров отражения проводились на фурье-спектрометре фирмы "Bruker" IFS66v при комнатной температуре в широком спектральном диапазоне от 30 до $5000\,\mathrm{cm^{-1}}$ при падении излучения близком к нормальному. Спектральное разрешение составляло $4\,\mathrm{cm^{-1}}$. Спектры поверхностных поляритонов в дальней ИК области $(25-550\,\mathrm{cm^{-1}})$ с разрешением $4\,\mathrm{cm^{-1}}$ в p-поляризованном свете измерялись в геометрии Отто [10] с использованием кремниевой призмы с изменением угла падения света от 20 до 45° и алмазной призмы с углом падения 45° . Спектры НПВО были измерены для всех трех образцов.

Поверхностные поляритоны (ПП) – электромагнитные возбуждения, распространяющиеся вдоль границы двух полубесконечных сред, имеющих разные знаки действительных частей диэлектрических проницаемостей и экспоненциально затухающие при удалении от границы. Если сред больше (слоистая структура), то $\varepsilon < 0$ должно быть хотя бы у одной из сред. Отрицательная $\mathrm{Re}\ \varepsilon$ может быть либо между частотами поперечного (TO) и продольного (LO) фонона – область "остаточных лучей" (Reststrahlen), либо при наличии свободных носителей ниже плазменной частоты. Это фононный и плазмонный ПП, соответственно. При этом, поскольку ПП чувствует все слои, его нельзя отнести к какому-то слою исследуемой структуры. Это возбуждение всей структуры.

Призма НПВО, установленная с некоторым зазором над образцом, позволяет согласовать волновые вектора ПП и возбуждающего их света, и тем самым, обеспечить резонансное поглощение света $\Pi\Pi$. На границе раздела призма-зазор возникает экспоненциально затухающая при удалении от границы волна. При поднесении образца к призме волна, вышедшая из призмы, начинает взаимодействовать с образцом и перекачивается на поверхность образца (в поверхностную волну). При этом коэффициент отражения уменьшается за счет возбуждения поверхностного поляритона, и в спектре отражения появляется провал, соответствующий его частоте. Положение этого провала зависит от угла падения света, т.е. от волнового вектора. При нанесении тонкой пленки на подложку и приближении ее к призме уже присутствуют две границы, что приводит к изменению уравнения дисперсии, кривые дисперсии сдвигаются, положение пика поверхностного поляритона смещается и возможно даже его расщепление. Можно сказать, что поле ПП концентрируется непосредственно у границы раздела и экспоненциально убывает с расстоянием от нее (ближнее поле). Таким образом, ПП очень чувствительны к характеристикам поверхности и тонким пленкам на ней [11, 14, 15].

Следует отметить, что оптимальная толщина зазора между призмой и поверхностью образца должна быть порядка длины волны ПП. Спектры НПВО, как известно, очень чувствительны к толщине зазора между образцом и призмой, поскольку призма возмущает поле ПП. Для корректного измерения частоты и полуширины полосы поглощения ПП при разных углах падения света в призме подбиралась такая величина зазора, чтобы интенсивность измеряемой полосы была на уровне нескольких процентов. В этом случае возмущение ПП призмой невелико. Воздушный зазор между призмой и образцом изменялся от нескольких микрон до десятков микрон с помощью лавсановых прокладок. Частотно-угловая зависимость ПП определяет его дисперсию. Дисперсия ПП хорошо описывается теоретически, если известны диэлектрические проницаемости и пленок, и подложки, а также толщины пленок. Из угловой зависимости спектров отражения в режиме НПВО построены кривые дисперсии поверхностных поляритонов.

3. Результаты и их обсуждение. Спектры ИК отражения образцов 092, 096 и 023 приведены на рис. 1–3 при 300 К в диапазоне частот от 30 до $400 \, \mathrm{cm}^{-1}$. На спектрах видны три полосы, связанные

Рис.1. ИК спектры отражения образцов 092, 096 при нормальном падении

Образец	Слои	d,	ε_{∞}	$\nu_{\mathrm{TO1}},$	S_{TO1} ,	$\gamma_{\mathrm{TO1}},$	$\nu_{\mathrm{TO2}},$	$\nu_{ au}$,	$\nu_p/\sqrt{\varepsilon_\infty},$ $_{\rm CM}^{-1}$
		HM		cm^{-1}	$_{\rm CM}^{-1}$	cm^{-1}	$_{\rm CM}^{-1}$	$_{\rm CM}^{-1}$	$_{\mathrm{CM}}^{-1}$
096	PbTe	83	40	36.5	1000	18.5	56.5	1500	31.6
	CdTe	630	8.24	138	77	8	-	50	69
	Объем	∞	10.1	269.4	391	2.6	-	400	117
	GaAs								
092	PbTe	86	40	37.7	1125	30	59.6	400	16
	CdTe	730	8.24	138	87	8.0	-	57	76
	Объем	∞	10.29	269.5	387	2.55	-	323	128
	GaAs								
023	CdTe	23.4	6.81	141.2	246	6.4	-	-	-
	PbTe	6.7	42.15	28.3	628	10	47.2	377	142
	Буферный слой	4320	6.78	141.8	230.8	6.8	-	-	-
	Объем	∞	10.14	267.5	363	2.5	_	_	-
	GaAs								

Таблица 1. Параметры пленки РbTe, подложки GaAs и буферного слоя CdTe (ν_{TO} , S_{TO} , γ , ν_p , ν_{τ})

Рис. 2. ИК спектры отражения образца 092 (эксперимент и расчет) при $300\,\mathrm{K}$

с поперечными колебаниями оптических фононов: GaAs (269 см⁻¹), CdTe (138 см⁻¹), PbTe (37 см⁻¹). Толщина пленок PbTe составляет примерно 80 нм в образцах 092 и 096, суммарная толщина слоев PbTe сверхрешетки CdTe/PbTe в образце 023 составляет 180 нм (табл. 1). Несмотря на большую разницу в толщинах подложки, буферного слоя и пленки низкочастотная полоса PbTe видна в спектрах отражения. Мы полагаем, что это связано с большой силой осциллятора TO фонона PbTe (табл. 1).

Из спектров отражения с помощью дисперсионного анализа получены параметры оптических фононов. Для этого экспериментальный спектр сравнивался с расчетом, использующим формулы Френеля для отражения от многослойной структуры. Частотная зависимость диэлектрической проницаемо-

Рис. 3. Спектры ИК отражения образца 023 (эксперимент и расчет) при $300\,\mathrm{K}$

сти каждого слоя была представлена в виде суммы высокочастотной диэлектрической постоянной ε_{∞} , лорентцевских осцилляторов и вклада свободных носителей (формула Друде).

$$\varepsilon(\nu) = \varepsilon_{\infty} (1 - \nu_p^2 / (\nu^2 + i\nu\nu_{\tau})) +$$

$$+ \Sigma (S_i^2 / (\nu_{\text{TO}i}^2 - \nu^2 - i\nu\gamma_i)). \tag{1}$$

Здесь $\nu_{{\rm TO}i}$ — частота i-го поперечного фонона, S_i и γ_i — его сила осциллятора и затухание, соответственно, $\nu_p=(4\pi ne^2/m^*)^{1/2}$ — плазменная частота свободных носителей, ν_{τ} — частота соударений свободных носителей. Эти параметры подбирались таким образом, чтобы получалось наилучшее согласие с экспериментом. Для этого использовалась программа SCOUT [16,17]. Изменяя подгоночные параметры, мы стремились минимизировать разницу

между экспериментальным и расчетным спектрами. В табл. 1 приведены параметры оптических фононов, сил их осцилляторов и затухание поперечной моды для трех образцов многослойных структур (092, 096, 023), вычисленные вышеуказанным способом. В пленках РьТе (образцы 092 и 096) и сверхрешетке (образец 023) наблюдаются две частоты оптических фононов: $TO_1 (29-37 \,\mathrm{cm}^{-1})$ и TO_2 $(47-55\,\mathrm{cm}^{-1})$ (табл. 1). На рисунке 3 хорошо видно расщепление низкочастотной полосы (образец 023). Частоту ТО1 мы связываем с частотой ТО фонона пленки PbTe, с решеткой типа NaCl, имеющей большую силу осциллятора (заметим, что частота ТО фонона в эпитаксиальных пленках PbTe $\nu_{\rm TO} = 32\,{\rm cm}^{-1}$ [18]), в то время как частоту ТО2 можно отнести к структурно-деформированному переходному слою на границе слоев CdTe/PbTe [19]. Деформация связана с тем, что CdTe имеет структуру цинковой обманки, а РьТе – каменной соли. Заметим, что образцы 096 и 092 имели концентрацию носителей $\approx 10^{16} \, \mathrm{cm}^{-3}$ при 300 К, в то время как для образца 023 рассчитанная концентрация носителей была на два порядка больше $(8.5 \cdot 10^{17} \,\mathrm{cm}^{-3} \,[13])$. В этом образце возникает плазмон - LO фононное взаимодействие, так как частоты $\nu_p/(\varepsilon_\infty)^{1/2} = 142\,\mathrm{cm}^{-1}$ и $\nu_\mathrm{LO} = 119\,\mathrm{cm}^{-1}$ близки по величине, в то время как подобное взаимодействие не наблюдается для образцов с низкой концентрацией носителей.

Проведены измерения спектров НПВО (ATR) с алмазной и кремниевой призмами в области от 25 до $550\,\mathrm{cm}^{-1}$ с различными толщинами зазоров между призмой и образцом для двух видов структур (рис. 4, 5). В спектрах НПВО в образцах 092 и 096

Рис. 4. Спектры НПВО образца 092 с различными толщинами воздушных зазоров (0 и 2 прокладки по 6 мкм) для алмазной призмы при угле падения 45°

Рис. 5. Спектр НПВО многослойного образца 023 для алмазной призмы при угле падения 45°

отчетливо видны минимумы на частотах 282, 163, 53, $34\,{\rm cm}^{-1}$. Минимумы при $282\,{\rm u}\,160\,{\rm cm}^{-1}$ мы связываем с поверхностными фононными поляритонами GaAs и CdTe, минимумы при 34 и 53 cm⁻¹ относятся к поверхностным фононным поляритонам пленки PbTe и переходного слоя CdTe/PbTe, соответственно. В то же время в образце 023 (рис. 5) отчетливо наблюдаются 6 минимумов на частотах 277, 187, 160, 121, 98, $40\,{\rm cm}^{-1}$. Минимум при $277\,{\rm cm}^{-1}$ мы связываем с поверхностным фононным поляритоном GaAs, минимумы 40 и $187 \,\mathrm{cm}^{-1}$ обусловлены плазмон – LO фононным взаимодействием с ветвями ν_- и ν_+ и могут быть интерпретированы как плазмон-фононные поляритоны. Фононный поляритон на частоте $160\,{\rm cm}^{-1}$ обусловлен отрицательным ε в слое CdTe. Минимумы $121, 98 \,\mathrm{cm}^{-1}$ мы интерпретируем как фононные поверхностные поляритоны в слоях PbTe и переходных слоях PbTe/CdTe.

Кривые дисперсии ПП были рассчитаны по формулам, приведенным в [20]. На рисунке 6 представлены рассчитанные кривые дисперсии ПП для трехслойной структуры GaAs/CdTe/PbTe. По оси абсцисс отложен безразмерный волновой вектор, зависящий от угла падения излучения θ и ε материала, из которого изготовлена призма $(\kappa_x = (\varepsilon_{\mathrm{prism}})^{1/2} \cdot \sin \theta)$. Кружки и квадраты – экспериментальные точки, полученные из НПВО спектров с использованием кремниевой и алмазной призм, для углов падения света 20, 22, 24, 45° . ПП около $300\,\mathrm{cm}^{-1}$ обусловлен отрицательной диэлектрической проницаемостью GaAs, но модифицирован пленками CdTe и PbTe. ПП при 150 см⁻¹ обусловлен отрицательной диэлектрической про-

Рис. 6. Расчетные кривые дисперсии поверхностных поляритонов для образцов 092 и 096. Кружки (092) и квадраты (096) — экспериментальные точки, полученные с использованием кремниевой и алмазной призм, для углов падения 20, 22, 24, 45°

ницаемостью СdTe, ПП в интервале 34–74 см⁻¹ связаны с фононами пленки PbTe и переходным слоем CdTe/PbTe. Из рисунка 6 видно, что экспериментальные частоты ПП лежат довольно близко к соответствующим кривым дисперсии.

4. Заключение. Таким образом, в настоящей работе впервые в многослойной структуре GaAs/CdTe/PbTe экспериментально наблюдались поверхностные фононные и плазмон-фононные поляритоны. Рассчитаны кривые дисперсии поверхностных поляритонов. Частоты поверхностных фононных поляритонов удовлетворительно согласуются с расчетными данными.

Это исследование было частично поддержано Национальным Научным Центром (Польша). Грант # UMO-2017/25/B/ST3/02966.

- Y. Tanaka, T. Sato, K. Nakayama, S. Souma, T. Takahashi, Z. Ren, M. Novak, K. Segawa, and Y. Ando, Phys. Rev. B 87, 155105 (2013).
- P. Dziawa, B. J. Kowalski, K. Dybko, R. Buczko,
 A. Szczerbakow, M. Szot, E. Lusakowska,
 T. Balasubramanian, B. M. Wojek, M. H. Berntsen,

- O. Tjernberg, and T. Story, Nat. Mater. **11**, 1023 (2012).
- J. W. Doak and C. Wolverton, Phys. Rev. B 86, 144202 (2012).
- 4. P. D. Borges, J. E. Petersen, L. Scolfaro, H. W. L. Alves, and T. H. Myers, J. Solid State Chem. 227, 123 (2015).
- 5. Z. Feit, M. McDonald, R. J. Woods, V. Archambault, and P. Mak, Appl. Phys. Lett. 68, 738 (1996).
- A. Hochreiner, T. Schwarzl, M. Eibelhuber, W. Heiss,
 G. Springholz, V. Kolkovsky, G. Karczewski, and
 T. Wojtowicz, Appl. Phys. Lett. 98, 021106 (2011).
- V. Kasiyan, Z. Dashevsky, C. M. Schwarz, M. Shatkhin, E. Flitsiyan, L. Chernyak, and D. Khokhlov, J. Appl. Phys. 112, 086101 (2012).
- 8. S. Chusnutdinow, M. Szot, T. Wojtowicz, and G. Karczewski, AIP Adv. 7, 035111 (2017).
- P. C. Findlay, C. R. Pidgeon, R. Kotitschke,
 A. Hollingworth, B. N. Murdin, C. J. G. M. Langerak,
 A. F. G. van der Meer, C. M. Ciesla, J. Oswald,
 A. Homer, G. Springholz, and G. Bauer, Phys. Rev. B
 12908 (1998).
- 10. A. Otto, Zs. Phys. 216, 398 (1968).
- Surface Polaritons. Electromagnetic Waves at Surfaces and Interfaces, ed. by V. M. Agranovich and D. L. Mills, North-Holland Publ., Amsterdam (1982), v. 1, part 1, p. 11.
- 12. Н. Н. Новикова, В. А. Яковлев, И. В. Кучеренко, В. С. Виноградов, Ю. А. Алещенко, А. В. Муратов, G. Karczewski, S. Chusnutdinow, ФТП **52**, 38 (2018).
- Н. Н. Новикова, В. А. Яковлев, И. В. Кучеренко, G. Karczewski, Ю. А. Алещенко, А. В. Муратов, Т. Н. Заварицкая, Н. Н. Мельник, ФТП 49, 658 (2015).
- 14. В. М. Агранович, УФН 115, 199 (1975).
- 15. E. A. Vinogradov, Phys. Rep. 217, 159 (1992).
- 16. W. Thei β , The SCOUT through CAOS, Manual of the Windows application SCOUT.
- 17. W. Thei β , Surf. Sci. Rep. **29**, 91 (1997).
- P. M. Amirtharaj, B. L. Bean, and S. Perkowitz, J. Opt. Soc. Am. 67, 939 (1977).
- Sh. Jin, Ch Cai, G. Bi, B. Zhang, H. Wu, and Y. Zhang, Phys. Rev. B 87, 235315 (2013).
- 20. Г. Н. Жижин, М. А. Москалева, Е. В. Шомина, В. А. Яковлев, *Поверхностные поляритоны*, Наука, М. (1985), гл. 3, с. 70.