Полупроводниковая наночастица в электрическом поле

М. А. Кожушнер⁺¹⁾, Б. В. Лидский⁺, В. С. Посвянский⁺, Л. И. Трахтенберг^{+*1)}

+Институт химической физики им. Н.Н. Семенова РАН, 119991 Москва, Россия

* AO "Научно-исследовательский физико-химический институт им. Л.Я. Карпова", 105064 Москва, Россия

Поступила в редакцию 8 августа 2018 г.

Проведено рассмотрение распределения электронов и положительных зарядов в сферической полупроводниковой наночастице с поверхностными ловушками электронов в однородном электрическом поле. В результате минимизации полной свободной энергии найдено результирующее электрическое поле в зависимости от плотности доноров, поверхностных ловушек и расстояния от центра наночастицы. Показано, что при относительно невысокой плотности доноров приповерхностные поля в областях входа и выхода поля из наночастицы заметно отличаются. Рассчитан наведенный дипольный момент наночастицы, определены величины вкладов в него от различных составляющих. Указаны области применения полученных результатов.

DOI: 10.1134/S0370274X18210130

1. Введение. Как известно, металлические и полупроводниковые наночастицы могут заметным образом менять диэлектрические свойства среды [1, 2]. Во многом это связано с воздействием электрического поля на распределение заряда в наночастице. Под действием поля происходит перераспределение отрицательных и положительных зарядов по объему наночастицы и на ее поверхности, в результате чего наночастица приобретает дипольный момент.

Благодаря приобретению наночастицей дипольного момента появляется возможность воздействия на нее электрическим полем: ориентировать наночастицу в пространстве и активно воздействовать на нее окружающими заряженными частицами, а в случае наличия дополнительного неоднородного поля придавать ей поступательное движение. Последнее явление называется диэлектрофорезом, и широко используется для перемещения и сегрегации биологических объектов [3, 4]. Наряду с обычным пассивным транспортом нанообъектов перспективно использование активного транспорта на основе броуновских рэтчетов [5–7], функционирующих за счет диэлектрофоретических взаимодействий наночастиц с электрическим полем [8-10]. При этом "диэлектрофоретические рэтчеты" имеют ряд преимуществ, к которым относится большое количество параметров управления движением, в том числе температура, частота и форма импульсов приложенного поля, вязкость среды и т.п.

Кроме того, транспорт наночастиц в среде в неоднородном электрическом поле весьма интен-

сивно изучается, поскольку он является одним из методов конструирования ансамблей наночастиц. Так, наночастицы в растворе могут выстраиваться в цепочки, благодаря взаимодействию наведенных внешним электрическим полем дипольных моментов этих наночастиц. Влияние электрического поля на самосборку является мощным средством управления структурой и свойствами ансамблей неорганических наночастиц. Свойства таких ансамблей существенно отличаются как от объемных образцов, так и от индивидуальных наночастиц [11, 12]. При этом особо отмечаются их электронные, оптические, электрические, плазмонные и магнитные свойства.

Для выяснения параметров, ответственных за транспорт наночастиц, необходимо уметь рассчитывать их дипольный момент, который определяется распределением зарядов внутри наночастицы в электрическом поле. Распределение зарядов в металлической наночастице в электрическом поле в той или иной мере известно [13, 14], а для полупроводниковой частицы воспользуемся статистическим методом, разработанным в работе [15]. Задача о пространственном распределении положительных и отрицательных зарядов в сферической полупроводниковой наночастице была решена последовательно, исходя из первых принципов. Необходимые уравнения, из которых найдено это распределение, получаются при минимизации полной свободной энергии зарядов системы – наночастицы. В результате для различных радиусов наночастиц и глубин ловушек в объеме и на поверхности были определены концентрации ионизованных примесей, а также электронов на поверх-

¹⁾e-mail: kozhushner@gmail.com; litrakh@gmail.com

ности и проводимости как функции температуры и расстояния от центра [15].

В данной работе решена задача о пространственном распределении положительных и отрицательных зарядов в сферической полупроводниковой наночастице и на ее поверхности, когда наночастица находится в постоянном электрическом поле. Важно здесь то, что задача, решенная в работе [15], благодаря центральной симметрии шара, была по сути одномерной. В рассматриваемом случае, вследствие присутствия постоянного электрического поля, задача о распределении зарядов в наночастице становится существенно двумерной.

2. Методика расчета распределения заряда в наночастице в электрическом поле. Рассмотрим сферическую полупроводниковую наночастицу радиуса R с поверхностными ловушками электронов, которые будем считать равномерно распределенными в слое толщиной d. Для нахождения распределения зарядов в наночастице, помещенной в электрическое поле **E**, надо минимизировать полную свободную энергию аналогично тому, как это было сделано в работе [15]. В результате минимизации распределение зарядов находится из решения уравнения Пуассона для электростатического потенциала $\varphi(r, \theta)$ (радиус r отсчитывается от центра наночастицы, а угол θ – от направления внешнего поля **E**):

$$\Delta\varphi(r,\theta) = -\frac{4\pi}{\chi}n(r,\theta),\tag{1}$$

с граничными условиями на поверхности сферы с радиусом $R+d{:}$

$$\chi_0 \nabla_r \varphi(r = R + d + 0) = \chi \nabla_r \varphi(r = R + d - 0) \quad (1a)$$

и на бесконечности

$$\nabla \varphi = -\mathbf{E} \quad \text{при} \quad r \to \infty. \tag{1b}$$

В уравнениях (1), (1а) χ и χ_0 – диэлектрические проницаемости материала наночастицы и среды, в которой находится наночастица, соответственно, $n(r, \theta)$ – это суммарная плотность зарядов в наночастице:

$$n(r, \theta) = [n_+(r, \theta) - n_c(r, \theta)] \quad \text{при} \quad r < R,$$

$$n(r, \theta) = -n_t^-(r, \theta) \quad \text{при} \quad R < r < R + d.$$
(2)

Здесь $n_c(r,\theta)$ – плотность электронов проводимости, $n_+(r,\theta)$ – плотность ионизованных доноров, $n_t^-(r,\theta)$ – плотность заряженных поверхностных ловушек. Эти плотности определяются следующими выражениями:

$$n_c(r,\theta) = \frac{\sqrt{2}}{\pi^2} (m^*)^{3/2} \int_0^\infty \frac{\varepsilon^{1/2}}{e^{(\varepsilon - \mu(r,\theta))/kT} + 1} d\varepsilon, \quad (3)$$

Письма в ЖЭТФ том 108 вып. 9-10 2018

$$n_{+}(r,\theta) = \frac{n_d}{1 + 2e^{(\varepsilon_d + \mu(r,\theta))/kT}},\tag{4}$$

$$n_t^{-}(\theta) = \frac{n_t}{1 + 0.5e^{-(\varepsilon_t + \mu(R,\theta))/kT}}.$$
 (5)

В этих выражениях m^* – эффективная масса электрона в зоне проводимости, n_d – плотность доноров в полупроводнике, n_t – плотность поверхностных ловушек, ε_d – энергия ионизации донора, ε_t – энергия связи электрона в поверхностной ловушке.

Химпотенциал $\mu(R, \theta)$ определяется выражением

$$\mu(r,\theta) = \mu_0 + \varphi(r,\theta), \tag{6}$$

где μ_0 – значение химпотенциала в центре наночастицы, где величина электростатического потенциала полагается нулем $\varphi(0) = 0$. Величина μ_0 определяется электронейтральностью наночастицы:

$$N_t^- + N_c = N_d^+.$$
 (7)

В выражении (7) число заряженных ловушек на поверхности наночастицы

$$N_t^- = 2 \int_R^{R+d} r^2 dr \int_0^\pi \sin(\theta) n_t^-(r,\theta) d\theta, \qquad (7a)$$

количество электронов проводимости

$$N_c = 2\pi \int_0^R r^2 dr \int_0^\pi \sin(\theta) n_c(r,\theta) d\theta \qquad (7b)$$

и число заряженных доноров

$$N_d^+ = 2\pi \int_0^R r^2 dr \int_0^\pi \sin(\theta) n_+(r,\theta) d\theta.$$
 (7c)

Жесткое ограничение электронной плотности границами наночастицы в (2), без учета туннельного "хвоста" снаружи, является, конечно, некоторой идеализацией задачи. Однако глубина проникновения поля внутрь полупроводника существенно больше глубины туннельного проникновения в вакуум, которое порядка 1 Å, поэтому граничные условия (2) не приводят к заметной ошибке.

Естественно, при малом, ~ 1 , числе электронов в системе статистический подход непригоден. Тогда необходим квантовый подход к нахождению пространственного распределения электронов в результирующем поле внутри наночастицы, которое создается равновесно распределенными донорными ионами и заряженными поверхностными ловушками.

После вычисления распределения зарядов и электрического поля можно рассчитать дипольный момент *P* наночастицы. Он определяется выражением

$$P = 2\pi \int_0^R r^3 dr \times$$

$$\times \int_0^\pi \sin(\theta) \cos(\theta) [n_+(r,\theta) - n_c(r,\theta)] d\theta -$$

$$- \frac{4\pi^2}{3} [(R+d)^3 - R^3] \left(R + \frac{d}{2}\right) \times$$

$$\times \int_0^\pi \sin(\theta) \cos(\theta) n_t^-(\theta) d\theta -$$

$$- \frac{\chi - 1}{2} \int_0^{R+d} r^2 dr \int_0^\pi \sin(\theta) \nabla_z \varphi d\theta. \tag{8}$$

Здесь 1-е, 2-е и 3-е слагаемые – это вклады в дипольный момент от электронов проводимости и заряженных доноров (P_1), поверхностных ловушек с электронами (P_2) и поляризационных диполей материала полупроводника (P_3), ответственных за появление диэлектрической проницаемости [16].

3. Результаты и обсуждение. Расчеты производились для наночастицы на основе донорного полупроводника со следующими характеристиками: эффективная масса электронов в зоне проводимости $m^* = 0.26$ (здесь и далее используются атомные единицы), энергия ионизации донора $\varepsilon_d = 5 \cdot 10^{-3}$, энергия связи электрона в ловушке на поверхности наночастицы $\varepsilon_t = 2 \cdot 10^{-2}$, диэлектрические проницаемости $\chi = 1.5$ и $\chi_0 = 1$, радиус наночастицы R = 100, толщина приповерхностного слоя с ловушками d = 2. Рассматривались концентрации доноров, $n_d = 1.5 \cdot 10^{-5} \text{ m } 10^{-4} (\sim 10^{20} \text{ cm}^{-3} \text{ m } 7 \cdot 10^{20} \text{ cm}^{-3}),$ плотности ловушек на поверхности, $n_t = 10^{-4}$; 10^{-3} $(\sim 4 \cdot 10^{12} \,\mathrm{cm}^{-2}; 4 \cdot 10^{13} \,\mathrm{cm}^{-2})$ и температуры 300, 500 и 600 К. Внешнее поле принималось равным $E = 5 \times$ 10^{-3} (~ 2.5×10^{7} B/cm), что соответствует характерному электрическому полю в сканирующем туннельном микроскопе (СТМ).

Величины поля вне частицы в зависимости от расстояния до ее поверхности для различных сочетаний параметров n_d и n_t могут заметно отличаться. Характерное расстояние от поверхности частицы, при которой полное электрическое поле, с вкладом от дипольного момента наночастицы приближается к величине внешнего поля (различие не более, чем на 20%) примерно равно радиусу наночастицы. На рисунке 1 изображена зависимость относительной величины поля вне частицы от расстояния до ее центра для следующих значений параметров: $n_d = 10^{-4}$, $n_t = 10^{-3}, T = 500$ К. Как следует из рисунка, вблизи поверхности отношение величины суммарного поля к величине внешнего поля немного меньше 3, и по мере удаления от поверхности остается меньше такого же отношения для металлической наночастицы (пунктирная линия).

Рис. 1. Электрическое поле снаружи наночастицы вдоль направления приложенного поля в зависимости от расстояния до центра: (+) – поле $E_+(r)$ и (-) – поле $E_-(r)$ (см. текст). Пунктирная линия – суммарное поле в случае металлической наночастицы. Значения полей на вставке рассчитаны для точек на расстоянии R + d от центра

Следует отметить, что поле у участка поверхности, радиус к которому направлен по внешнему полю, $\theta = 0$ (назовем его "+", а соответствующее поле E_{+}), несколько меньше, чем у участка поверхности, радиус к которому направлен против внешнего поля, $\theta = 180^{\circ}$ ("—" и E_{-} соответственно). Качественно это можно объяснить так: у поверхности "-" собираются электроны проводимости и заряженные поверхностные ловушки, а у поверхности ("+") – положительные ионы. Если электроны проводимости и положительные ионы концентрируются в объемах вблизи соответствующих участков поверхности, то отрицательно заряженные ловушки собираются на самой поверхности "-" и сильнее воздействуют на поле. При удалении от поверхности кривые $E_{+}(r)$ и $E_{-}(r)$ сближаются и стремятся к величине приложенного поля.

Электрические поля вблизи поверхности наночастиц для различных наборов параметров n_d и n_t для 500 К (температура практически не влияет на величину наведенного поля в интервале 300–600 К) представлены в табл. 1. Для исследованных наборов величины полей связаны как с плотностью доноров, так

Таблица 1. Суммарное электрическое поле у поверхности наночастицы

n_d	$1.5 \cdot 10^{-5}$		10	10^{-4}	
n_t	10^{-4}	10^{-3}	10^{-4}	10^{-3}	0
E_+/E	1.96	1.96	2.64	2.70	2.60
E_{-}/E	2.54	2.76	2.70	2.9	2.66

и с плотностью поверхностных ловушек электронов. При большой концентрации доноров поля E_+ и $E_$ близки друг к другу (см. вставку на рис. 1). В области $n_d = 2 \cdot 10^{-4}$ поле E_+ начинает плавно уменьшаться, а зависимость E_- сохраняет свою величину, и совершает резкое падение при $n_d = 2 \cdot 10^{-5}$. Наличие ловушек, благодаря их расположению на поверхности, сильнее влияет на поле E_- .

Возникающий под действием внешнего поля дипольный момент полупроводниковой наночастицы P(8) представлен в табл. 2. Наряду с полным диполь-

Таблица 2. Наведенный дипольный момент полупроводниковой наночастицы

E	n_d	n_t	Р	P_1	P_2	P_3
$5 \cdot 10^{-3}$	10^{-4}	10^{-3}	5006.3	948.2	3998.2	59.9
$5 \cdot 10^{-3}$	10^{-4}	0	4453.1	4302.5	0	150.6
$5\cdot 10^{-4}$	10^{-4}	10^{-3}	516.7	22.3	492.3	2.1
$5\cdot 10^{-4}$	10^{-4}	0	414.7	395.7	0	19
$5 \cdot 10^{-5}$	10^{-4}	10^{-3}	51.7	2.2	49.3	0.2
$5 \cdot 10^{-5}$	10^{-4}	0	38.7	36.4	0	2.3

ным моментом Р, в 5-й, 6-й и 7-й колонках даны вклады в дипольный момент от первого, второго и третьего слагаемых в выражении (8). Нетрудно видеть, что основной вклад в полный дипольный момент дают поверхностные заряды. При нулевой плотности ловушек на поверхности, полный момент оказывается несколько меньше. При этом основную роль в создании дипольного момента наночастицы начинают играть электроны проводимости и заряженные доноры, т.е. происходит заметное перераспределение зарядов по наночастице. Отметим, что диэлектрический вклад в полный момент (третье слагаемое в выражении (8)) существенно меньше, чем у непроводящего диэлектрика [16], что связано с ослаблением электрического поля внутри полупроводника. В случае уменьшения внешнего поля в 10 раз, изменение дипольного момента лишь примерно пропорционально полю, однако при дальнейшем уменьшении внешнего поля пропорциональность момента полю становится строгой.

4. Заключение. В работе рассмотрена сферическая полупроводниковая наночастица с поверхностными ловушками электронов в однородном внешнем электрическом поле. Рассчитаны распределения зарядов в наночастице и найдено результирующее электрическое поле. Представлены поля вблизи поверхности наночастицы при различных плотностях доноров и поверхностных ловушек. Показано, что при низких плотностях доноров приповерхностные поля с разных сторон наночастицы, относительно Авторы признательны В.Л. Бодневой и М.И. Иким за помощь в работе. Работа поддержана в рамках государственного задания 0082-2018-0003 (регистрационный номер АААА-А18-118012390045-2) и грантов Российского фонда фундаментальных исследований (18-57-00003-Бел а и 18-29-02012-мк).

- Broadband Dielectric Spectroscopy and its Advanced Technological Applications, ed. by Yu.P. Kalmykov, Springer, Berlin (2013).
- Dielectric Relaxation in Biological Systems. Physical Principles, Methods, and Applications, ed. by V. Raicu and Yu. Feldman, Oxford University Press, Oxford (2015).
- P. J. Burke, Nanodielectrophoresis: Electronic Nanotweezers, in: Encyclopedia of Nanoscience and Nanotechnology, ed. by H. S. Nalwa and S. Ranch, CA: American Scientific 6, 623 (2004).
- R. Pethig, Dielectrophoresis. Theory, Methodology and Biological Applications, John Wiley Sons, Inc., Hoboken, NJ (2017).
- A. Schadschneider, D. Chowdhury, and K. Nishinari, Stochastic Transport in Complex Systems: From Molecules to Vehicles, Elsevier, Amsterdam (2010).
- D. Cubero and F. Renzoni, Brownian Ratchets: From Statistical Physics to Bio and Nano-motors, Cambridge University Press, Cambridge (2016).
- V. M. Rozenbaum, I. V. Shapochkina, S. H. Lin, and L. I. Trakhtenberg, JETP Lett. 105, 542 (2017).
- S. Saha and J.F. Stoddart, Chem. Soc. Rev. 36, 77 (2007).
- P. Hanggi and F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009).
- V. M. Rozenbaum, M. L. Dekhtyar, S. H. Lin, and L. I. Trakhtenberg, J. Chem. Phys. **145**, 064110 (2016).
- Y. Liu, K. Oh, J.B. Bai, C.L. Chang, W. Yeo, J.H. Chung, K.H. Lee, and W.K. Liu, Comp. Methods Appl. Mech. Eng. **197**, 2156 (2008).
- Z. Nie, A. Petukhova, and E. Kumacheva, Nature Nanotech. 5, 15 (2010).
- J. Kottmann, O. Martin, D. Smith, and S. Schultz, New J. Phys. 2, 27 (2000).
- M. Scanlon, P. Peljo, M. Mendez, E. Smirnov, and H. Girault, Chem. Sci. 6, 2705 (2015).
- M. A. Kozhushner, B. V. Lidskii, I. I. Oleynik, V. S. Posvyanskii, and L. I. Trakhtenberg, J. Phys. Chem. C 119, 16286 (2015).
- Л. Д. Ландау, Е. М. Лифшиц, Электродинамика сплошных сред, Наука, М. (1982), гл. 2.