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Noise in the helical edge channel anisotropically coupled to a local spin
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Experiments revealed that the actual conductance
of the edge states of two-dimensional topological insula-
tors (2D TI) is much smaller than the theoretical value
e2/h [1], which implies a presence of spin-flip processes.
Different mechanisms of such processes were proposed
[2–7], but none of them has obtained a definite experi-
mental confirmation.

An efficient tool for determining the mechanism of
conduction are measurements of nonequilibrium noise.
So far, most theoretical papers dealing with noise in 2D
TI addressed the electron tunneling between the heli-
cal states at opposite edges of the insulator [8–11]. The
noise in the edge states themselves due to the hyper-
fine interaction of the electrons with nuclear spins and
nonuniform spin-orbit coupling was calculated in [12].
The shot noise that results from the exchange of elec-
trons between the edge states and conducting puddles in
the bulk of the insulator was calculated in [13]. Very re-
cently, the current noise generated by a local magnetic
moment coupled to the edge states was considered in
[14]. These authors calculated the noise spectrum for the
case of isotropic coupling by extrapolating the Nyquist
relation to finite voltages. They also presented an ex-
pression for the noise at vanishingly small anisotropic
coupling, zero frequency, and high bias.

In this paper, we microscopically calculate the non-
equilibrium electrical noise for an arbitrary anisotropy
of exchange coupling of the edge states to a local spin
1/2 and arbitrary classical frequencies. Our results co-
incide with [14] in the limiting cases.

Consider a pair of helical edge states with linear dis-
persion ε(k) = ±v0k. These states connect two electron
reservoirs kept at constant voltages ±V/2 and are cou-
pled to a magnetic impurity via a Hamiltonian [15]

Hint = JzSzsz + J0 (S+s− + S−s+) +

+ Ja (S+ + S−) sz +

+ J1Sz (s+ + s−) + J2 (S+s+ + S−s−), (1)

where Sz, S± = Sx ± iSy and sz, s± are the operators
of the impurity spin and of the spin density of electrons
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at its location. In the weak-coupling limit2), the master
equation for the occupation numbers of the spin-up and
spin-down states N↑ and N↓ = 1−N↑ is of the form

dN↑

dt
= (Γ+

0 + Γa + Γ+
2 )N↓ − (Γ−

0 + Γa + Γ−
2 )N↑. (2)

The transition rates Γ±
0 , Γa, and Γ±

2 are proportional
to α0 = |J0|2/4v20 , αa = |Ja|2/4v20, and α2 = |J2|2/4v20,
respectively. The electrical current equals

I = I in
↑ + I in

↓ − e (Γ+
0 N↓ − Γ−

0 N↑) +

+ e (Γ+
1 − Γ−

1 ) + e (Γ+
2 N↓ − Γ−

2 N↑), (3)

where the currents injected into the edge states from the
left and right reservoirs are given by equations I in

↑,↓ =

= ±(e/2π~)
∫

dε f↑,↓(ε) and the rest of terms describe
spin-flip backscattering of electrons from the impurity.
The rates of scattering events that do not change the
impurity spin Γ±

1 are proportional to α1 = |J1|2/4v20.
The two sources of noise in the edge states are the

partition noise and the occupation-number noise [16].
The former may be taken into account by introducing
into Eqs. (2) and (3), the external sources associated
with each scattering process whose spectral density is
twice the sum of scattering fluxes in both directions [17].
The latter comes into play through the fluctuations of
the distribution functions of injected electrons, whose
correlation function is well known [18].

If the electron-impurity coupling is rotationally sym-
metric with respect to the z axis, the total spin of the
electrons and the impurity is conserved by the scat-
tering, and therefore the dc current and the spectral
density of noise at zero frequency are not affected by
it. At nonzero frequencies, we reproduce the results of
[14]. The fluctuation-dissipation relation is valid in this
particular case because for an isotropic coupling, the
nonequilibrium system may be mapped onto an equilib-
rium one in external magnetic field [19].

The coupling may be anisotropic even for a point-
like impurity [15]. In this case, the coupling constant
Ja is nonzero as well as J0, so both Γa and Γ±

0 have to

2)This implies that we are well above Kondo temperature.
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be taken into account. The scattering process described
by Γa leads to a relaxation of the impurity spin, and
therefore the scattering correction to the dc current is
nonzero. However Γa is proportional to T/~, while Γ+

0

is proportional to eV/~ at eV ≫ T . This is why the
backscattering current Ibs = e2V/2π~−I initially grows
with voltage but eventually saturates at Ibs = αaeT/π~.
The nonequilibrium noise shows a similar behavior and
tends to SI = (2e2/π~) (1 + αa)T . The Fano factor of
the excess noise with respect to the backscattering cur-
rent Fbs ≡ (SI − 2e2T/π~)/2eIbs is unity. This suggests
that the backscattering of different electrons from the
impurity is totally uncorrelated.

If the impurity has a finite size, all the coupling pa-
rameters in the Hamiltonian (1) may be nonzero. As the
three scattering rates Γ±

0 , Γ±
1 , and Γ±

2 are proportional
to eV/~ at eV ≫ T , the backscattering current and the
current noise also increase proportionally to the voltage.
As the voltage increases, the Fano factor with respect
to backscattering current becomes

Fbs =
α1 (α0 + α2)

3 + 4α0α2 (α
2
0 + α2

2)

[α1 (α0 + α2) + 2α0α2](α0 + α2)2
. (4)

Depending on the ratios α1/α0 and α2/α0, it varies
between 1 and 2 and reaches maximum in the limit
α1 ≪ α2 ≪ α0 (see Fig. 1). The increase of Fbs above 1

Fig. 1. (Color online) Fano factor vs. α1/α0 and α2/α0

suggests that the events of electron backscattering from
the impurity are correlated. A similar increase of the
Fano factor above unity was observed in resonant tun-
neling via interacting localized states [20].

At α1 ≪ α2 ≪ α0, the frequency dependence of
spectral density is consistent with a picture of a ran-
dom sequence of current pulses of the form

Ip(t) = e
[
√
2 δ(t) + (2−

√
2) Γ0 Θ(t) exp(−Γ0t)

]

, (5)

which carry a charge of 2e each.
The only experimental paper on electrical noise in

the edge states of 2D TI we are aware of is [21], which
reported the conductance much smaller than e2/~ and
the Fano factor smaller than one. To test the current
theory, one could controllably implant magnetic impu-
rities like Mn near the edges of a 2D TI.
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