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Quantum computation is based on a controllable

manipulation with quantum objects, characterized by

individual addressability. Due to their outstanding tun-

ability, superconducting quantum circuits can be used

not only in quantum computing, but also for the ob-

servation of various fundamental phenomena, which are

hard to realize in the case of natural systems [1–9]. Su-

perconducting qubits coupled to resonators are also con-

sidered as analog simulators of Dicke model. Such sys-

tems have been studied using spectroscopic methods,

which reveal anticrossings in their spectra [10–12]. An-

ticrossings are known to appear both for quantum and

classical systems provided they are interacting. Thus, it

is attractive to consider additional experimental setups

with such circuits explicitly based on their properties

distinctive for the quantum world.

In this Letter we propose a concept of mixed analog-

digital simulation of Dicke model, where quantum logic

gates and addressability of qubits are utilized to engi-

neer initial states, which can be both entangled and dis-

entangled. Entangled states are characterized by sym-

metries and the influence of the symmetry on the sub-

sequent evolution can serve as an unambiguous proof of

the quantum nature of an artificial system. The evolu-

tion is caused by the Hamiltonian embedded physically

into the quantum hardware, which is an essence of ana-

log quantum simulation. We illustrate our suggestion

with few examples.

We start with the nonradiant states localized in the

qubit subsystem. The localization is based on the ex-

citation blockade in the qubit subsystem due to the
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quantum entanglement and negative quantum interfer-

ence [13]. We hereafter numerate qubits in order of in-

creasing their excitation energies. We adopt a notation

|ϕm〉 = σ+
m|↓ . . . ↓〉. The simplest example of the nonra-

diant state is an antisymmetric Bell state |Ψ−
p,q〉 being

defined as |Ψ±
p,q〉 = 1√

2
(|ϕp〉 ± |ϕq〉) . In order to create

such states, it is possible to use the idea realized in [14].

The initial states engineered in [14] are |↑〉 and |↑↑〉.
They were created through additional control lines for

tunable-frequency qubits utilized to excite them in the

dispersive regime. By tuning their frequencies, resonant

interaction between resonator and the excited qubits has

been attained. In a similar way, entangled states can be

engineered, although this requires application of a two-

qubit entangling gate, such as controlled-not (CNOT)

gate, and several single-qubit gates. Using such digital

operations, it is possible to engineer even more sophisti-

cated states of the qubit subsystem, which are difficult

to construct for purely analog simulator.

Let us consider a dissipative evolution of the system

taking into account different imperfections (disorder in

qubits excitation energies and decoherence). The whole

system is described by the master equation

∂tρ(t)− Γ[ρ(t)] = −i[H, ρ(t)], (1)

where ρ(t) is a density matrix. The ma-

trix Γ[ρ] is Γ[ρ] = κ(aρa† − {a†a, ρ}/2) +∑
j (γ(σj,−ρσj,+ − {σj,+σj,−, ρ}/2) + γϕ(σj,zρσj,z − ρ)),

where the first term describes an energy dissipation in

the cavity, the second one – in each of the qubits, while

the third one corresponds to the pure dephasing; κ, γ,

and γϕ are rates of these processes. The Hamiltonian is
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H =

L∑

j=1

ǫjσ
+
j σ

−
j + ωa†a+ g

L∑

j=1

(a†σ−
j + aσ+

j ), (2)

where a† and a correspond to photons, while σ±
j , σz

j are

Pauli operators related to the qubits. The number of

qubits is L . 10. We consider strong coupling limit, κ,

γ, γϕ < g. We also assume that g ≪ ω. The spreading

in ǫj’s is ∼ g
√
L that implies that the disorder starts to

be important.

In our computations, we analyze a time evolution

of the fidelity F of |Ψ±
p,q〉 with randomly chosen p and

q. It can be determined experimentally by measuring

qubits in Bell basis. Qualitatively, F describes robust-

ness of the initial state. We focus on the determination

of the most destructive mechanisms for the suppression

of the expected for the ideal system behavior. We find

that the sensitivity of the dynamics to the symmetry of

the initial Bell state is strongly suppressed by disorder.

However, F (t) for |Ψ+〉 contains fast oscillations with

frequency ∼ g due to Hamiltonian bright eigenstates,

which are stronger coupled to the light [15]. Also, en-

velopes of F (t) remain to be different for two Bell states.

For mesoscopic ensembles, these features can be used to

distinguish between the dynamics of |Ψ−
p,q〉 and |Ψ+

p,q〉.
Relaxation κ ∼ g, however, suppresses the fast oscil-

lations, but generally preserves the form of envelopes.

Now, if we turn on finite γϕ and make it of the order of

a mean separation between neighboring ǫj ’s, it is able to

destroy the difference in envelopes, so that the difference

between F (t) is smeared completely. Of course, finite γ

also plays a destructive role by simply de-exciting the

qubits.

Another interesting feature relevant to the evolution

of the closed system is the radiation trapping effect [13].

It occurs provided there are many identical two-level

systems interacting resonantly with the single-mode ra-

diation field, while one of these systems is excited, so

that the initial state of the system is |ϕm〉. It turns

out that the presence of the environment of remaining

qubits, though they are in their ground states, must

strongly affect dynamics of the particular excited qubit

by slowing down its radiative relaxation to the cavity.

We suggest that the realization of the radiation trap-

ping effect in artificial qubit-cavity systems can serve

for the demonstration of the Dicke physics. We found

that this effect is relatively robust to the disorder for

the described above range of parameters. It is also ro-

bust with respect to the finite κ (up to κ & g), which is

related by the domination of dark eigenstates of H [15].

However, the effect is fragile with respect to both the

finite γ and γϕ.

In summary, we suggested an idea of mixed analog-

digital simulation of Dicke model with superconducting

quantum circuit, where a set of quantum logic gates is

used to engineer various initial states of the qubit ensem-

ble, while qubits interact naturally through the photon

field of the resonator. The dependence of the dynamics

on the symmetry of the initial entangled state can serve

as an unambiguous demonstration of a quantum nature

of such artificial systems. Various dynamical phenomena

related to Dicke physics can be realized.

This work is supported by Advanced Research Foun-

dation (project # 7/076/2016-2020). Yu.E. Lozovik ac-

knowledges a support from Russian Foundation for Ba-

sic Research (project # 17-02-01134) and from the Pro-

gram of Basic Research of High School of Economics.

Full text of the paper is published in JETP Letters

journal. DOI: 10.1134/S0021364018230030
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