Home
For authors
Submission status

Archive
Archive (English)
Current
   Volumes 113-119
   Volumes 93-112
      Volume 112
      Volume 111
      Volume 110
      Volume 109
      Volume 108
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
Search
VOLUME 109 (2019) | ISSUE 6 | PAGE 369
Tetrads and q-theory
Abstract
As the microscopic structure of the deep relativistic quantum vacuum is unknown, a phenomenological approach (q-theory) has been proposed to describe the vacuum degrees of freedom and the dynamics of the vacuum energy after the Big Bang. The original q-theory was based on a four-form field strength from a three-form gauge potential. However, this realization of q-theory, just as others suggested so far, is rather artificial and does not take into account the fermionic nature of the vacuum. We now propose a more physical realization of the q-variable. In this approach, we assume that the vacuum has the properties of a plastic (malleable) fermionic crystalline medium. The new approach unites general relativity and fermionic microscopic (trans-Planckian) degrees of freedom, as the approach involves both the tetrad of standard gravity and the elasticity tetrad of the hypothetical vacuum crystal. This approach also allows for the description of possible topological phases of the quantum vacuum.