Комбинированный резонанс межслоевой проводимости в Q2D проводниках

Д. И. Степаненко¹⁾

Физико-технический институт низких температур им. Б. И. Веркина НАН Украины, 61103 Харьков, Украина

> Поступила в редакцию 29 июля 2019 г. После переработки 2 сентября 2019 г. Принята к публикации 2 сентября 2019 г.

Получены аналитические выражения для резонансной части межслоевой проводимости квазидвумерных проводников в наклонном магнитном поле, обусловленные спин-орбитальным взаимодействием Рашбы–Дрессельхауса. Показано, что в области значений углов между магнитным полем и нормалью к проводящим слоям, в которой проявляются угловые осцилляции проводимости, основной вклад в резонансы на комбинационных частотах дает взаимодействие Дрессельхауса. Результаты можно использовать для экспериментального определения абсолютных значений констант спин-орбитального взаимодействия.

DOI: 10.1134/S0370274X1919010X

Введение. Исследование резонансного магнитопоглощения является испытанным способом получения информации о зонной структуре и других характеристиках проводящих систем. В однородном электромагнитном поле и пренебрежении спинорбитальным взаимодействием (СОВ), орбитальная и спиновая динамика электронов независимы и резонансное поглощение обусловлено либо переходами между уровнями Ландау либо переворотом спина. СОВ связывает орбитальное и спиновое движение и делает возможным резонанс, вызванный переходами с одновременным изменением, как номера уровня Ландау, так и проекции спина – комбинированный резонанс (КР) [1, 2].

В обычных металлах СОВ, как правило, пренебрежимо мало, поэтому КР проводимости проявляется в полупроводниках, полуметаллах [1, 2] и двумерных системах [3]. Имеется еще один тип материалов, в которых возможна реализация КР – слоистые проводящие структуры с квазидвумерным (Q2D) электронным энергетическим спектром. Примером сильно анизотропных проводников, в которых экспериментально наблюдались высокочастотные резонансы разных типов (см. обзоры [4–6] и цитируемую литературу), являются низкоразмерные проводники органического происхождения. Основные структурные элементы этих веществ представляют собой органические молекулы, например TTF, BEDT–TTF, BEDO–TTF, обладающие донорными или акцептор-

Хотя органические проводники имеют сложную молекулярную и кристаллическую структуру, их электронные зонные структуры достаточно просты. Поверхность Ферми (ПФ) органических проводников резко анизотропна и может состоять из квазиодномерных и Q2D листов. Исследования угловых осцилляций магнитосопротивления и квантовых магнитных осцилляционных эффектов [7] при температурах жидкого гелия показывают, что Q2D элементы обычно представлены слабо гофрированным цилиндром. Примером органических Q2D металлов, ПФ которых состоит из всего лишь одного слабогофрированного цилиндра, являются соли тетратиафульвалена $\beta - (BEDT - TTF)_2 IBr_2$ и $\beta - (BEDT - TTF)_2 I_3$. Анизотропию электронного энергетического спектра Q2D проводника можно характеризовать малым параметром η , квадрат которого равен отношению проводимостей вдоль нормали **n** к слоям и в плоскости слоев в отсутствие магнитного поля. Энергия электрона в поле кристаллической решетки в приближении сильной связи может быть представлена в виде быстро сходящегося ряда

$$\varepsilon(\mathbf{p}) = \varepsilon_0(p_x, p_y) + \sum_{n=1}^{\infty} \varepsilon_n(p_x, p_y) \cos \frac{np_z}{p_0}.$$
 (1)

ными свойствами. В Q2D проводниках ион-радикалы этих молекул упакованы в проводящие слои, разделенные слоями молекул противоионов. Электропроводность вдоль слоев при комнатной температуре в ряде соединений может превышать $10^3 \, \mathrm{Om^{-1}/cm}$ и растет с понижением температуры, а в поперечном направлении – порядка $1 \, \mathrm{Om^{-1}/cm}$ и меньше.

¹⁾e-mail: stepanenko@ilt.kharkov.ua

Функции $\varepsilon_n(p_x, p_y)$ существенно убывают с ростом их номера, наибольшая из них $\varepsilon_1 \simeq \eta \varepsilon_F$. Здесь $p_0 = \hbar/a$, a – расстояние между слоями, ε_F – энергия Ферми, \hbar – постоянная Планка. Площадь сечения ПФ $S(\varepsilon_F, p_B)$ плоскостью p_B = const слабо зависит от проекции импульса электрона p_B на направление магнитного поля **B**, такая зависимость имеет место лишь в первом порядке по параметру анизотропии η . Резонансные эффекты при поглощении электромагнитного излучения в Q2D системах должны проявляться более ярко, чем в квазиизотропных проводниках при сопоставимых длинах свободного пробега носителей заряда, поскольку в их формировании участвуют почти все электроны на ПФ, а не выделенная группа, на экстремальном сечении ПФ.

Отличие физических свойств слоистых проводников, как от свойств обычных металлов, так и двумерных проводящих систем проявляется, прежде всего, в явлениях переноса в направлении нормали к слоям, в частности, в возникновении серии максимумов магнитосопротивления при изменении угла θ между векторами В и п [8, 9]. Угловые осцилляции межслоевого магнитосопротивления наблюдались не только в органических металлах [7], но и в других низкоразмерных слоистых проводниках неорганического происхождения, например [10–12]. В настоящем сообщении на основании модели СОВ Рашбы [1, 3]-Дрессельхауса [13] теоретически исследован КР межслоевой проводимости в Q2D проводниках в наклонном магнитном поле. Получены аналитические выражения для резонансной части проводимости в зависимости от величины и направления магнитного поля. Показано, что в области значений θ , в которой имеют место угловые осцилляции $\tan \theta \gg 1$, основной вклад в резонансы на комбинационных частотах обусловлен взаимодействием Дрессельхауса.

Уравнение для плотности тока. Плотность тока, описывающая временную и пространственную дисперсию, имеет вид [14]

$$j_i(\mathbf{r},t) = \int_{-\infty}^t dt' \int d^3 \mathbf{r}' G_{ik}\left(\mathbf{r},\mathbf{r}',t-t'\right) E_k(\mathbf{r}',t'). \quad (2)$$

Ядро интегрального оператора (запаздывающую функцию Грина) в одночастичном приближении можно записать следующим образом

$$G_{ik}\left(\mathbf{r},\mathbf{r}',t-t'\right) = \sum_{\nu,\nu'} e^{-i(\omega_{\nu\nu'}-i/\tau_{\nu\nu'})(t-t')} \frac{f_{\nu'}-f_{\nu}}{\varepsilon_{\nu}-\varepsilon_{\nu'}} \times \langle \nu | \hat{j}_{k}(\mathbf{r}') | \nu' \rangle \langle \nu' | \hat{j}_{i},(\mathbf{r}) | \nu \rangle.$$
(3)

Здесь $\mathbf{E}(\mathbf{r},t)$ – переменное электрическое поле, $f_{\nu} = \left[1 + \exp T^{-1}(\varepsilon_{\nu} - \mu)\right]^{-1}$ – равновесная функция распределения квазичастиц с энергией ε_{ν} в индивидуальном состоянии с квантовыми числами ν и температурой T, μ – химический потенциал, $\omega_{\nu\nu'} = (\varepsilon_{\nu} - \varepsilon_{\nu'})/\hbar$, $\tau_{\nu\nu'}^{-1} = (\tau_{\nu}^{-1} + \tau_{\nu'}^{-1})/2$, τ_{ν} и $\tau_{\nu'}$ – феноменологические времена жизни квазичастиц в состояниях ν и ν' . Для рассматриваемых ниже процессов ширина \hbar/τ_{ν} уровня ε_{ν} должна быть значительно меньше расстояния $\Delta \varepsilon = \varepsilon_{\nu} - \varepsilon_{\nu_1}$ между смежными уровнями энергии. $\langle \nu | \hat{j}_i(\mathbf{r}) | \nu' \rangle$ – матричные элементы оператора плотности тока

$$\hat{\mathbf{j}}(\mathbf{r}) = \frac{e}{2} \left\{ \hat{\mathbf{v}}(\hat{\mathbf{p}}) \,\delta\left(\mathbf{r} - \mathbf{r}'\right) + \delta\left(\mathbf{r} - \mathbf{r}'\right) \hat{\mathbf{v}}(\hat{\mathbf{p}}) \right\} + c \operatorname{rot} \hat{\boldsymbol{\mu}}_0 \delta(\mathbf{r} - \mathbf{r}'), \tag{4}$$

 $\hat{\mathbf{v}} = \partial \hat{\varepsilon} / \partial \hat{\mathbf{p}}, \, \hat{\mathbf{p}} = -i\hbar\partial / \partial \mathbf{r} - e\mathbf{A}_0(\mathbf{r})/c$ – оператор кинематического импульса, e – заряд электрона, c – скорость света, $\hat{\mu}_0 = -(g\mu_B/2)\,\hat{\sigma}$ – оператор магнитного момента электрона проводимости, μ_B – магнетон Бора, g – эффективный g-фактор, $\hat{\sigma}$ – магрицы Паули, $\mathbf{A}_0(\mathbf{r})$ – векторный потенциал постоянного однородного магнитного поля. Двухкомпонентные спиноры $|\nu\rangle$ представляют собой собственные функции одночастичного гамильтониана $\hat{\varepsilon}(\hat{\mathbf{p}})$.

Формула (1) записана в системе координат xyz, в которой ось z параллельна направлению наименьшей проводимости, а ось y можно направить перпендикулярно магнитному полю $\mathbf{B} = (B \sin \theta, 0, B \cos \theta)$. Воспользуемся другой системой координат $\xi y \zeta$ с осью ζ , параллельной вектору \mathbf{B} , и выберем калибровку векторного потенциала $\mathbf{A}_0(\mathbf{r}) = (-By, 0, 0)$, рис. 1. Компоненты импульса в обеих системах координат связаны преобразованием вращения на угол θ между нормалью к слоям и магнитным полем.

Рис. 1. Поверхность Ферми и системы координат

Возьмем за основу гамильтониан электрона

$$\hat{\varepsilon}\left(\hat{\mathbf{p}}\right) = \hat{\varepsilon}_{0}(\hat{p}_{x}, \hat{p}_{y}) - \hat{\boldsymbol{\mu}}_{0}\mathbf{B} + \sum_{n=1}^{\infty} \hat{\varepsilon}_{n}(\hat{p}_{x}, \hat{p}_{y})\cos\frac{n\hat{p}_{z}}{p_{0}} + \hat{V}_{so},$$
(5)

Письма в ЖЭТФ том 110 вып. 7-8 2019

с оператором СОВ

$$\hat{V}_{so} = \hat{V}_R + \hat{V}_D = \gamma_R \hat{\boldsymbol{\sigma}} \left(\hat{\mathbf{p}} \times \mathbf{n} \right) + \gamma_D \hat{\boldsymbol{\sigma}} \left(\mathbf{e}_x \hat{p}_x - \mathbf{e}_y \hat{p}_y \right), \ (6)$$

состоящим из суммы операторов взаимодействий Рашбы и Дрессельхауса. Здесь **n** – направление оси высокой симметрии кристалла, которое мы будем полагать совпадающим с нормалью к слоям, γ_R и γ_D – константы COB, \mathbf{e}_x , \mathbf{e}_y – единичные орты вдоль осей $x, y, \hat{\boldsymbol{\sigma}} = (\hat{\sigma}_{\xi}, \hat{\sigma}_y, \hat{\sigma}_{\zeta})$

$$\hat{\sigma}_{\xi} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \hat{\sigma}_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \hat{\sigma}_{\zeta} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Для рассматриваемых проводящих систем, операторы энергии движения электрона вдоль нормали к слоям и СОВ следует считать возмущением. Полный набор квантовых чисел $\nu = n, p_{\xi}, p_B, \sigma$ состоит из номера уровня Ландау n, проекций импульса p_{ξ}, p_B и спина $s_{\zeta} = \sigma_{\zeta}/2 \equiv \sigma/2$. Спиновая часть волновой функции нулевого приближения является собственной функцией оператора $\hat{\sigma}_{\zeta}$.

Выполним каноническое преобразование операторов $\hat{\varepsilon}$ и $\hat{\mathbf{j}}$

$$\hat{\varepsilon}' = e^{-\hat{S}}\hat{\varepsilon}e^{\hat{S}} = \hat{\varepsilon} + \left[\hat{\varepsilon}, \hat{S}\right] + \frac{1}{2!}\left[\left[\hat{\varepsilon}, \hat{S}\right], \hat{S}\right] + \dots, \quad (7)$$

приводящее гамильтониан к диагональному по спину виду. В нулевом приближении преобразованный гамильтониан совпадает с невозмущенным оператором $\hat{\varepsilon}^{(0)}$, а матричные элементы оператора \hat{S} в первом порядке по \hat{V}_{so} равны

$$\langle \nu | \hat{S} | \nu' \rangle = \frac{\langle \nu | \hat{V}_{so}^N | \nu' \rangle}{\varepsilon_{\nu'}^{(0)} - \varepsilon_{\nu}^{(0)}},\tag{8}$$

где \hat{V}_{so}^{N} – недиагональная по спину часть оператора \hat{V}_{so} . В этой формуле предполагается, что частота электронного парамагнитного резонанса (ЭПР) $\omega_s = g\mu_B B/\hbar$ не равна циклотронной частоте ω_B и ее гармоникам $l\omega_B$, т.е. линии комбинированного и циклотронного резонансов не должны совпадать, в противном случае при некоторых значениях n и n' знаменатель в (8) может обратиться в нуль.

Матричные элементы оператора компоненты $\hat{j}_z^{(l)}$ орбитальной части плотности тока (4) диагональны по спину, поэтому КР межслоевой проводимости определяется произведением $\langle \nu | (\hat{j}_z^{(l)\prime} \mathbf{r}) | \nu' \rangle \langle \nu' | \hat{j}_z^{(l)\prime} (\mathbf{r}') | \nu \rangle$ в формулах (2), (3), где $\hat{j}_z^{(l)\prime} (\mathbf{r}) = \begin{bmatrix} \hat{j}_z^{(l)} (\mathbf{r}), \hat{S} \end{bmatrix}$.

КР межслоевой проводимости. Полагая $\mathbf{E}(\mathbf{r},t)$ и $\mathbf{j}(\mathbf{r},t) \sim \exp(i\mathbf{kr} - i\omega t)$, из формул (2), (3)

Письма в ЖЭТФ том 110 вып. 7-8 2019

несложно найти поправку к межслоевой проводимости, описывающую резонанс на комбинационных частотах

$$\sigma_{zz}^{(so)} = i \sum_{\nu,\nu'} \frac{f_{\nu} - f_{\nu'}}{\varepsilon_{\nu} - \varepsilon_{\nu'}} \frac{\langle \nu | \hat{j}_z^{(l)\prime}(0) | \nu' \rangle \langle \nu' | \hat{\mathcal{J}}_z^{(l)\prime}(\mathbf{k}) | \nu \rangle}{\omega_{\nu\nu'} - \omega - i\tau_{\nu\nu'}^{-1}}, \quad (9)$$

где $\langle \nu' | \hat{\mathcal{J}}_z^{(l)'}(\mathbf{k}) | \nu \rangle = \int d^3 \mathbf{r} \, e^{-i \, \mathbf{k} \mathbf{r}} \langle \nu' | \hat{j}_z^{(l)'}(\mathbf{r}) | \nu \rangle$. В случае, когда электрический ток протекает вдоль нормали к слоям, глубина скин-слоя δ определяется компонентой проводимости σ_{zz} , которая в $\eta^{-2} \simeq 10^3 - 10^5$ раз меньше проводимости в плоскости слоев, и пространственной дисперсией обычно можно пренебречь [15].

Для нахождения матричных элементов $\langle \nu | \hat{j}_z^{(l)\prime}(\mathbf{r}) | \nu' \rangle$ необходимо использовать конкретную модель электронного энергетического спектра. Допустим, что энергия электрона (1) определяется нулевой и первой Фурье-гармониками проекции импульса на нормаль к слоям. Пренебрежем анизотронией в плоскости слоев и положим $\varepsilon_1(p_x, p_y) = -\varepsilon_{\eta}$. Тогда формула (1) принимает вид

$$\varepsilon(\mathbf{p}) = \frac{p_x^2 + p_y^2}{2m} - \varepsilon_\eta \cos \frac{p_z}{p_0},\tag{10}$$

где m – эффективная масса, $\varepsilon_{\eta} = \eta v_F p_0, v_F =$ $=\sqrt{2\varepsilon_F/m}$. Случай, когда энергетический спектр в плоскости слоев представлен произвольной положительно определенной квадратичной формой квазиимпульса, сводится к (10) с помощью преобразований вращения и растяжения осей координат. Уравнение Шредингера для невозмущенного гамильтониана $\hat{\varepsilon}^{(0)}$ приводится к уравнению гармонического осциллятора с частотой $\omega_B = |e| B \cos \theta / (mc)$. Если угол θ между магнитным полем и нормалью к слоям близок к $\pi/2$, то замкнутые сечения ПФ $S(\varepsilon_F, p_B)$ сильно вытянуты, электрон не успевает сделать полный оборот по квазиклассической орбите в импульсном пространстве за время свободного пробега и динамические резонансные эффекты не проявляются. Поэтому мы предполагаем выполненным неравенство $\eta \tan \theta \ll 1.$

Представим ширину резонанса в виде $\tau_{\nu\nu'}^{-1}\equiv \equiv \tau_{ls}^{-1}=\tau_{s}^{-1}+\tau_{l}^{-1},$ где τ_{s} – время переворота спина, а τ_{l}^{-1} – ширина резонанса при переходе электрона с уровня Ландау n'=n+lна уровень nс сохра-

нением проекции спина. После простых вычислений получим

$$\sigma_{zz}^{(so)} = i\eta^2 \frac{\omega_p^2 \omega_B}{\pi^2} w \sum_n \int d\beta \left\{ \frac{f_{n,-1} - f_{n,1}}{\omega_s} |a_{n0}|^2 h_0 + \sum_{l=1}^{\infty} \left(\frac{f_{n,-1} - f_{n+l,1}}{\Omega_l^{(+)}} h_l^{(+)} + \frac{f_{n,1} - f_{n+l,-1}}{\Omega_l^{(-)}} h_l^{(-)} \right) |a_{nl}|^2 \right\}.$$

Здесь $\omega_p = \sqrt{4\pi n_0 e^2/m}$ – плазменная частота, n_0 – плотность электронов, $\beta = p_B/(p_0 \cos \theta)$. Мы опустили в обозначении равновесной функции распределения электронов f_{n,σ,p_B} индекс сохраняющейся величины p_B . Функции частоты

$$h_0 = \frac{\omega + i\tau_s^{-1}}{\left(\omega + i\tau_s^{-1}\right)^2 - \omega_s^2}, \ h_l^{(\pm)} = \frac{\omega + i\tau_{ls}^{-1}}{\left(\omega + i\tau_{ls}^{-1}\right)^2 - \Omega_l^{(\pm)\,2}},$$
(12)

при $\tau_{ls}^{-1} \to 0$ имеют резкие максимумы для частот ω , равных частотам КР $\omega_{\rm res} = \left| \Omega_l^{(\pm)} \right|$, где $\Omega_l^{(\pm)} = l \, \omega_B \pm \omega_s$, а функция угла θ

$$w = \frac{\gamma_R^2 \left(\omega_B + \omega_s \cos\theta\right)^2 + \gamma_D^2 \left(\omega_s - \omega_B \cos\theta\right)^2}{a_B^2 \left(\omega_B^2 - \omega_s^2\right)^2} \quad (13)$$

определяет вклады в $\sigma_{zz}^{(so)}$ взаимодействий Рашбы и Дрессельхауса, $a_B = \sqrt{\hbar/(m\omega_B)}$. При больших значениях n, коэффициенты

$$a_{nl} = \sqrt{\frac{n!}{(n+l)!}} \frac{\alpha^{l+1}}{2\sqrt{2^l}} e^{-\alpha^2/4} \operatorname{L}_n^l\left(\frac{\alpha^2}{2}\right) \cos\left(\beta + \frac{\pi l}{2}\right)$$
(14)

описывают осцилляционную зависимость $\sigma_{zz}^{(so)}$ от угла θ , $\alpha = (a_B/r_0) \tan \theta$, $r_0 = c p_0/(|e|B)$, $L_n^l(x)$ – обобщенные полиномы Лагерра. С помощью асимптотического представления полиномов Лагерра [16], a_{nl} можно выразить через функции Бесселя J_l

$$a_{nl} = \frac{1}{2} \alpha \mathcal{J}_l \left(\sqrt{2n} \, \alpha \right) \cos \left(\beta + \frac{\pi l}{2} \right), \quad n \gg 1$$

В выражении для энергии электрона

$$\varepsilon_{n,\sigma,p_B} = \hbar\omega_B \left(n + \frac{1}{2}\right) + \frac{\hbar\omega_s\sigma}{2} - \varepsilon_\perp \cos\beta,$$

где

$$\varepsilon_{\perp} = \varepsilon_{\eta} e^{-\alpha^2/4} \mathbf{L}_n \left(\frac{\alpha^2}{2}\right) \xrightarrow[n \gg 1]{} \varepsilon_{\eta} \mathbf{J}_0 \left(\sqrt{2n} \,\alpha\right)$$

мы пренебрегли членами второго порядка по \hat{V}_{so} , т.е. пропорциональными γ_R^2 и γ_D^2 , приводящими к поправкам к энергетическим уровням, но не влияющими на интенсивность резонанса и угловую зависимость кинетических коэффициентов. Каждое слагаемое в сумме по l в формуле (11) определяет асимптотику проводимости $\sigma_{zz}^{(so)}$ в окрестности $\pm l$ -го резонанса $\omega \approx \left|\Omega_l^{(\pm)}\right|$. Первое слагаемое в (11) с l = 0 соответствует чисто спиновым переходам, при этом ширина резонанса определяется обратным временем переворота спина τ_s^{-1} .

Как следует из явного вида a_{nl} (14), в магнитном поле, направленном вдоль нормали к слоям $\theta = 0$ и в отсутствии пространственной дисперсии в рамках выбранных моделей энергии электрона в поле кристаллической решетки и СОВ, проводимость $\sigma_{zz}^{(so)}$ обращается в нуль. В пространственно неоднородном поле коэффициенты a_{nl} отличны от нуля и при **В** || **n**. Например, в случае, когда электрическое поле **E**(**r**) ~ exp(*iky*) (дисперсия в направлении **В** проявляется в первом порядке по η), при $\theta = 0$ и $\varepsilon_F \gg \hbar\omega_B$, проводимость $\sigma_{zz}^{(so)}$ определяется формулой (11), в которой нужно положить

$$\left|a_{nl}\right|^{2} = \frac{1}{4}q^{2}\mathrm{J}_{l}^{2}\left(\sqrt{2n}\,q\right)\sin^{2}\beta,$$

где $q = a_B k$, $\sqrt{2n} q \simeq kr_B$, $r_B = v_F/\omega_B$ – циклотронный радиус. Угловые осцилляции имеют место при больших значениях $\tan \theta$. Для рассматриваемой геометрии задачи $kr_B \simeq k\delta^{-1} < 1$, и качественная картина угловой зависимости резонансной части межслоевой проводимости (9) описывается формулой (11).

Если число уровней Ландау ниже ε_F велико, то проводимость (11) испытывает осцилляции типа де Гааза–ван Альфена. Воспользовавшись формулой Пуассона, после стандартных преобразований представим выражение (11) в виде суммы

$$\sigma_{zz}^{(so)} = \bar{\sigma}_{zz} + \tilde{\sigma}_{zz} \tag{15}$$

плавной

$$\bar{\sigma}_{zz} = i\eta^2 \frac{\omega_p^2}{4\pi} \,\alpha^2 w \left\{ \mathbf{J}_0^2(\alpha_1) h_0 + \sum_{l=1}^{\infty} \mathbf{J}_l^2(\alpha_1) \left(h_l^{(+)} + h_l^{(-)} \right) \right\}$$
(16)

и осциллирующей с изменением B^{-1} частей

$$\tilde{\sigma}_{zz} = i\eta^2 \frac{\omega_p^2 \omega_B}{2\pi} \alpha^2 w \left\{ J_0^2(\alpha_1) \frac{h_0}{\omega_s} Q_0 + \sum_{l=1}^{\infty} J_l^2(\alpha_1) \left(\frac{h_l^{(+)}}{\Omega_l^{(+)}} - \frac{h_l^{(-)}}{\Omega_l^{(-)}} \right) Q_l \right\}.$$
(17)

Здесь $\alpha_1 = \alpha \sqrt{2\mu/(\hbar\omega_B)} \simeq (mv_F/p_0) \tan \theta$,

$$Q_l = \sum_{j=1}^{\infty} \frac{(-1)^j}{j} F_l(j\Delta) \psi(j\lambda) \sin \frac{\pi j \omega_s}{\omega_B} \cos \frac{2\pi j \mu}{\omega_B},$$
$$\psi(\lambda) = \frac{\lambda}{\sinh \lambda}, \quad \lambda = 2\pi^2 T / (\hbar \omega_B).$$

Письма в ЖЭТФ том 110 вып. 7-8 2019

Амплитуда осциллирующих гармоник в сумме Q_l промодулирована квазипериодической функцией

$$F_l(\Delta) = \mathbf{J}_0(\Delta) - (-1)^l \mathbf{J}_2(\Delta),$$

аргумент которой $\Delta = 2\pi \varepsilon_{\eta} J_0(\alpha_1) / (\hbar \omega_B)$ зависит не только от B^{-1} , но и от $\tan \theta$.

При $\varepsilon_{\eta} \simeq \eta \varepsilon_F \gg \hbar \omega_B$, формула (17) описывает осцилляции $\sigma_{zz}^{(so)}$ с изменением обратной величины магнитного поля. В случае $\eta \varepsilon_F \simeq \hbar \omega_B$, строго говоря, следует учитывать осцилляционную зависимость химического потенциала μ от B^{-1} , которая определяется из уравнения сохранения числа электронов, а в окрестности резонансов $\omega \approx \left| \Omega_l^{(\pm)} \right|$ и зависимость от B^{-1} времен релаксации τ_{ls} . В области достаточно низких температур $T \leq \hbar \omega_B / (2\pi^2)$, при $\eta \varepsilon_F \gg \hbar \omega_B$ и произвольных значениях θ , осциллирующая часть проводимости $\tilde{\sigma}_{zz} \simeq F_l(\Delta) \bar{\sigma}_{zz} \simeq \bar{\sigma}_{zz}/\sqrt{\Delta}$ в $\sqrt{\Delta} \sim$ $\sim \sqrt{\eta \varepsilon_F / (\hbar \omega_B)}$ раз меньше плавной части $\bar{\sigma}_{zz}$. Однако, для значений $\theta = \theta_i$, при которых $\alpha_1 \sim \tan \theta_i$ является корнем функции Бесселя $J_0(\alpha_1) = 0$, она возрастает до значений порядка $\bar{\sigma}_{zz}$. Для этих направлений магнитного поля зависимость площади сечения $\Pi \Phi S(\varepsilon_F, p_B)$ от проекции импульса p_B появляется в членах, квадратичных по η .

Представим резонансную проводимость (11) в виде суммы $\sigma_{zz}^{(so)} = \sigma_R + \sigma_D$ частей, обусловленных взаимодействиями Рашбы и Дрессельхауса. Из формул (11), (13) следует

$$\frac{\sigma_R}{\sigma_D} = \frac{\gamma_R^2}{\gamma_D^2} \frac{(\omega_s + \omega_0)^2 \cos^2 \theta}{(\omega_s - \omega_0 \cos^2 \theta)^2},\tag{18}$$

где $\omega_0 = |e|B/(mc)$. В области значений θ , в которой проявляются угловые осцилляции проводимости $\tan \theta \gg 1$, асимптотика $\sigma_{zz}^{(so)}$ определяется СОВ Дрессельхауса, $\sigma_D \gg \sigma_R$. Формулы (11), (13), (18) можно использовать для экспериментального нахождения абсолютных значений констант γ_R и γ_D . Наибольший интерес представляют чисто спиновые переходы с l = 0 на частоте ω_s , поскольку $\tau_s > \tau_l$ и, кроме того, с увеличением θ уменьшается $\omega_B \tau_l$ и, соответственно, интенсивность *l*-го резонанса.

Заключение. Неоднородное высокочастотное электромагнитное поле может возбуждать переходы на комбинационных частотах даже без учета COB [17]. Плотность тока (2) пропорциональна вихревому электрическому полю и, следовательно, включает члены, пропорциональные магнитному полю $\mathbf{B}^{\sim} = i (\omega/c) (\mathbf{k} \times \mathbf{E})$. Спиновая часть $\hat{\mathbf{j}}^{(s)} = c \operatorname{rot} \hat{\boldsymbol{\mu}}_0 \delta(\mathbf{r} - \mathbf{r}')$ оператора (4) в формулах (2), (3) определяет высокочастотную намагниченность, возбуждаемую переменным полем \mathbf{B}^{\sim} и парамагнитную восприимчивость $\chi_{ik}(\omega, \mathbf{k})$. В случае ${f E}({f r}), {f B}^{\sim}({f r}) \sim \exp(iky)$, резонансы намагниченности на комбинационных частотах обусловлены матричными элементами $\langle \nu | \hat{j}_{\xi}^{(s)}({f r}) | \nu' \rangle \langle \nu' | \hat{j}_{\xi}^{(s)}({f r}') | \nu \rangle$. Структура резонансного поглощения микро-

волнового излучения в органических соединениях, представляет собой суперпозицию пиков, соответствующих различным типам резонансов. В силу схожести картин КР проводимости, ЭПР и КР спиновой намагниченности, появляется проблема идентификации экспериментально полученных данных. Парамагнитная восприимчивость в отличии от $\sigma_{zz}^{(so)}$ не содержит осциллирующих множителей типа $J_{I}^{2}((mv_{F}/p_{0})\tan\theta)$. Простой расчет показывает, что угловая зависимость плавной части $\bar{\chi}_{\xi\xi}$ определяется зависимостью резонансных функций (12) $h_{\iota}^{(\pm)}$ от $\omega_B \sim \cos \theta$, а угловая зависимость квантовой, осциллирующей с изменнением B^{-1} части $\tilde{\chi}_{\xi\xi}$, кроме того, включает еще множители $J_0(j\Delta)$. Таким образом, анализ зависимости поглощаемой мощности от ориентации магнитного поля и параметров ПФ позволяет уверенно отличать КР межслоевой проводимости от ЭПР и других типов резонансов.

- 1. Э.И. Рашба, ФТТ ${\bf 2},$ 1224 (1960).
- 2. Э.И. Рашба, УФН **84**, 557 (1964).
- Ю. Ф. Бычков, Э. И. Рашба, Письма в ЖЭТФ **39**, 66 (1984).
- S. Hill and S. Takahashi, Microwave spectroscopy of Q1D and Q2D organic conductors, in The Physics of Organic Superconductors and Conductors, ed. by A.G. Lebed, Springer, Berlin (2008), p. 457.
- H. Ohta, M. Kimata, and Y. Oshima, Sci. Technol. Adv. Mater. 10, 024310 (2009).
- В. Г. Песчанский, Д.И. Степаненко, ФНТ 42, 1221 (2016).
- J. Wosnitza, Fermi Surface of Low-Dimensional Organic Metals and Superconductors, Springer Tracts in Mod. Phys. 134, 1 (1996).
- 8. K. Yamaji, J. Phys. Soc. Jpn. 58, 1520 (1989).
- V. G. Peschansky, J. A. Roldan Lopez, and T. G. Yao, J. Phys. Fr. 1, 1469 (1991).
- M. Baxendale, V.Z. Mordkovich, and S. Yoshimura, Solid State Comm. 107, 165 (1998).
- E. Ohmichi, H. Adachi, Y. Mori, Y. Maeno, T. Ishiguro, and T. Oguchi, Phys. Rev. B 59, 7263 (1999).
- Y. Yoshida, A. Mukai, R. Settai, K. Miyake, Y. Inada, Y. Onuki, K. Betsuyaku, H. Harima, T.D. Matsuda, Y. Aoki, and H. Sato, J. Phys. Soc. Jpn. 68, 3041 (1999).
- 13. G. Dresselhaus, Phys. Rev. 100, 580 (1955).
- О.В. Константинов, В.И. Перель, ЖЭТФ 37, 786 (1959).
- 15. S. Hill, Phys. Rev. B 55, 4931 (1997).
- Г. Бейтмен, А. Эрдейи, Высшие трансцендентные функции, Наука, М. (1974), т. 2, с. 199.
- 17. М. Я. Азбель, ФТТ 4, 569 (1962).