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Modelling of quasi-1D Wigner solid melting in a parabolic confinement
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Phase transitions in two dimensional (2D) crystal

has a special importance in condensed matter physics,

which includes Wigner crystallization and melting in a

strongly correlated systems [1, 2]. To study this phe-

nomena different theoretical approaches based on topo-

logical defects [3], displacement of particles [4, 5] and

correlation between them [6, 7] were applied. This work

was inspired by recent experimental studies of a q1D

electron crystal in confined geometry [8–10].

The aim of this work is to build a computer model to

simulate processes investigated experimentally, obtain

critical temperature at the phase transition using dif-

ferent melting criteria (Lindemann parameter, structure

factor, translational correlation function [11, 12, 15]).

In this work a q1D electron system with unscreened

Coulomb interaction was considered. Quantum effects

are not significant in this case due to low density of elec-

trons in the system with typical interelectron distance

∼ 0.5µm.

The system has periodic boundary conditions in x

direction and parabolic potential in transversal y direc-

tion. The total energy can be written as
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where ri is coordinate of particles, ε0 – vacuum permit-

tivity, e – charge of electron, k = mω2
y is the parameter

of the parabolic potential with m being mass of electron

and ωy – angular frequency describing confinement. In

computer realisation of this model dimensionless param-

eters were used. A ground state configuration of parti-

cles with the lowest total energy was obtained as a first

step in the computation. Particles were randomly dis-

tributed in the cell and energy minimisation procedure

based on gradient descent method was applied to find

the ground state configuration. In the second step ther-

mal motion was introduced to the system. Thermal mo-

tion was introduced by 500 steps of Molecular Dynamics
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(MD) to avoid local extremum of the energy. The algo-

rithm was repeated until convergence was achieved. The

whole procedure was repeated several times and system

with the lowest energy was chosen. Energy of the sys-

tem was calculated using Ewald summation technique

[13]. MD simulations are based on Verlet integration,

temperature was introduced using Langevin Brunger–

Brooks–Karplus (LBBK) method using NVT ensemble

[14, 15]. In this work we investigate only intrinsic prop-

erties of the electron system and do not take into ac-

count interaction of electrons with ripplons (quantized

capillary waves of helium surface) and helium vapour

atoms. Time step ∆t was chosen with respect to the

characteristic time of electron-electron interaction in 2D

system which is defined by short- wavelength plasma fre-

quency ωp = (e2n
3/2
s /2mε0)

1/2 ≈ 500τ−1
0 for the typical

electron densities, ∆t = (2π/ωp)/100 = 10−4τ0.

Critical temperature was obtained using melting cri-

teria based on modified Lindemann parameter, struc-

ture factor, pair correlation function, translation cor-

relation function, and density of particles with a non-

typical number of neighbours.

Computer simulation of melting of a quasi-1D crys-

tal was tested in the system with four electron chains.

The ground state configuration of this system is free

from defects [16]. Total number of electrons in the sim-

ulation cell was chosen N = 160 and parameter of con-

finement κ̃ = 2× 105.

The temperature dependence of the modified Lin-

demann parameter is presented in Fig. 1. Two different

regions were identified at low and high temperatures

and attributed to solid and liquid phases of q1D sys-

tem respectfully. Generally melting point is determined

when Lindemann parameter reaches the threshold value

(0.1–0.2) [12]. In our analysis melting point was identi-

fied differently. At small temperatures Lp(T ) grows lin-

early and above the critical temperature have rapid in-

crease. These two regions of Lp(T ) were approximated

with linear functions independently, melting tempera-

ture Tm ≈ 0.55 was obtained at the crossing point of

two lines (solid red lines in Fig. 1). Temperature depen-
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Fig. 1. (Color online) Temperature dependence of Lp

(black) and density of particles with a wrong number of

neighbours nd (blue) in the system with N = 160. Red

lines represent linear approximation of the two tempera-

ture regions, related to solid and liquid phases

dence of the density of particles with a wrong number

of neighbours (not 6 for bulk particles and not 4 for

edge particles) nd is also presented in Fig. 1. The tem-

perature dependence nd(T ) is similar to Lp(T ) and the

critical temperature is located at the same place. At low

temperatures there are almost no defects, above Tm the

number of defects grows rapidly with temperature.

Structure factor S(q) was calculated using coordi-

nates of particles obtained in MD simulations. The in-

tensity of peaks decreases with temperature, which in-

dicates loss of the translational order in the system.

The system is finally disordered at Tm ≈ 0.65 – in

a good agreement with melting temperature obtained

from temperature dependence of modified Lindemann

parameter.

We calculated translation correlation function gG(r),

at low temperatures translational correlation function

decreases with the power law dependence gG(r) ∝ r−ηG ,

at high temperatures gG(r) ∝ e−r/ξ, where ξ is the cor-

relation length. Close to the phase transition point cor-

relation length ξ diverges. Joint analysis of two ηG(T )

and ξ(T ) dependences gives us value for critical tem-

perature Tm ≈ 0.6, which is in agreement with previous

estimations.

Recently an experimental study of phase transitions

in the system of electrons on the surface of liquid helium

in a quasi-1D microchannels was reported [8]. These ex-

periments demonstrated a good control over the number

of electron rows formed in the microchannel, ranging

from 1 < Ny < 25. This gives T0 = 0.7K, therefore the

melting temperature TMD
m = 0.42K presented in this

work is in a good agreement to the experimental value

T exp
m = 0.6K. It should be noted, that the correspond-

ing plasma parameter Γ = 94± 10 at the melting point

is lower that the 2D melting criteria. The explanation

of this behaviour will be described elsewhere.

In conclusion we studied melting process in the

quasi-1D electron crystal in the harmonic potential us-

ing molecular dynamics. All methods gave similar crit-

ical temperatures Tm ≈ 0.6. We found that the phase

transition is more pronounced in temperature depen-

dence of modified Lindemann parameter. The value of

the critical temperature Tm = 0.42K obtained from cal-

culations is in good agreement with the experimental

value T exp
m = 0.6K.
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