## Скейлинговое поведение спектров протонов, дейтронов и тритонов, рождаемых с большими $p_T$ в p + A и ${}^{12}$ С + А взаимодействиях

Н. Н. Антонов<sup>+</sup>, А. А. Балдин<sup>\*</sup>, В. А. Викторов<sup>+</sup>, А. С. Галоян<sup>\*</sup>, В. А. Гапиенко<sup>+1)</sup>, Г. С. Гапиенко<sup>+</sup>, В. Н. Гресь<sup>+</sup>, М. А. Илюшин<sup>+</sup>, А. Ф. Прудкогляд<sup>+</sup>, Д. С. Пряников<sup>+</sup>, В. А. Романовский<sup>+</sup>, А. А. Семак<sup>+</sup>, И. П. Солодовников<sup>+</sup>, В. И. Терехов<sup>+</sup>, М. Н. Уханов<sup>+</sup>, С. С. Шиманский<sup>\*</sup>

+Институт физики высоких энергий, НИЦ "Курчатовский институт", 142281 Протвино, Россия

\* Объединенный институт ядерных исследований, 141980 Дубна, Россия Поступила в редакцию 24 декабря 2019 г.

После переработки 23 января 2020 г. Принята к публикации 23 января 2020 г.

В работе представлены первые данные по рождению легчайших ядерных фрагментов p, d, t с большими поперечными импульсами  $(p_T)$  под углом 40° (лаб. сист.) во взаимодействиях протонов с импульсом 50 ГэВ/с и ядер углерода с импульсом 20A ГэВ/с с ядерными мишенями. Показана возможность единого описания p + A и C + A данных на основе скейлингового подхода, что, возможно, является свидетельством единого механизма образования ядерных фрагментов с большими  $p_T$  в этих реакциях. Результаты получены в эксперименте СПИН (ИФВЭ, Протвино).

DOI: 10.31857/S0370274X2005001X

В настоящей работе продолжено проводимое экспериментом СПИН исследование особенностей образования кумулятивных частиц с большими поперечными импульсами. Под кумулятивными частицами, рожденными в столкновении двух объектов, из которых, по крайней мере, один является ядром, понимают частицы с кинематическими параметрами, запрещенными для взаимодействий со свободными нуклонами. Исследование рождения кумулятивных частиц с большими поперечными импульсами является одним из путей получения информации о свойствах ядерной материи при передаче ей больших величин энергии и импульса.

В работах [1–4] можно найти детали эксперимента, там же представлены данные по регистрации кумулятивных частиц с  $p_T > 2 \Gamma$ эВ/с, образуемых под углом 35° (лаб. сист.) в  $p_A$  взаимодействиях при импульсе пучка 50 ГэВ/с. Анализ особенностей образования кумулятивных частиц позволил сделать вывод [3, 4] о наблюдении прямого выбивания из ядра дейтронов и тритонов в исследуемой нами кинематической области, что является указанием на существование в ядрах холодной плотной многонуклонной (многокварковой) компоненты.

В этой работе представлены данные по образованию легчайших ядерных фрагментов (p, d, t) в p+A и C + A столкновениях. Частицы, вылетающие из ми-

шени, регистрировались под углом  $40^{\circ}$  (лаб. сист.). Импульс пучка протонов был  $50 \, \Gamma$ эВ/с, а у пучка углерода импульс был  $20A \, \Gamma$ эВ/с. При работе с протонным пучком были набраны данные по рождению частиц на четырех мишенях С, Al, Cu и W. При работе с углеродным пучком использовались две мишени С и W, поэтому для сравнительного анализа p + A и C + A взаимодействий в этой работе используются только данные, набранные с углеродной и вольфрамовой мишенями. Большим преимуществом проводимого сравнения является то, что данные по p + A и C + A взаимодействиям получены на одной установке при близких экспериментальных условиях.

На рисунке 1 приведены спектры p, d и t частиц, вылетающих под углом  $40^{\circ}$  в p + C, p + W, C + C и C + W взаимодействиях. Максимальное значение поперечного импульса частиц составляет  $p_T \approx 2.7 \, \Gamma$ эВ/с. Вертикальными линиями на рис. 1 показаны пределы для упругого нуклон-нуклонного рассеяния под углом  $40^{\circ}$ . Как видно из рис. 1, спектры частиц измерены как в предкумулятивной, так и в кумулятивной областях кинематики. Характерным для всех 4-х наборов данных являются растущие с ростом импульса относительные выходы дейтронов и тритонов, что может свидетельствовать о едином механизме рождения протонов и легких ядерных фрагментов в этих реакциях.

Для проведения сравнительного анализа p + Aи C + A реакций, которые различаются по энер-

<sup>&</sup>lt;sup>1)</sup>e-mail: Vladimir.Gapienko@ihep.ru



Рис. 1. Спектры протонов (кружки), дейтронов (прямоугольники) и тритонов (треугольники) в четырех разных взаимодействиях. Вертикальные линии соответствуют кинематическому пределу упругого нуклоннуклонного рассеяния на 40°

гии и типу налетающего пучка, можно использовать скейлинговый подход, предложенный в работах [5, 6]. В этом подходе образование частицы с большими  $p_T$  рассматривается как продукт жесткого квазибинарного процесса, в котором участвуют компоненты, несущие доли  $X_1$  и  $X_2$ , от четырех-импульсов  $P_1$ и P<sub>2</sub> соответственно налетающей частицы и мишени. Для определения величин  $X_1$  и  $X_2$  используется дополнительное условие – требуется, чтобы инвариантная энергия квазибинарной реакции была минимальной. Для описания поведения инклюзивных спектров в работе [6] была введена безразмерная скейлинговая переменная  $\Pi = \sqrt{S_{\min}}/2m_N$ , где  $S_{\min}$  – это минимальная энергия квазибинарной реакции, при которой возможен данный инклюзивный процесс, а  $m_N$  – масса нуклона. Анализ большого набора экспериментальных данных по рождению частиц в кумулятивной и подпороговой областях показал [6,7], что инвариантные сечения рождения частиц в столкновении ядер  $A_1 + A_2$  могут быть описаны зависимостью

$$f_{A_1+A_2} = E \frac{d^3 \sigma}{dp^3} = C_1 \cdot A_1^{\alpha(X_1)} \cdot A_2^{\alpha(X_2)} \cdot \exp(-\Pi/C_2),$$
(1)

где  $A_1$  и  $A_2$  – атомные массы сталкивающихся ядер,  $C_1$  и  $C_2$  – константы,  $\alpha(X)$  – функция от  $X_1$  или  $X_2$ . Предполагается, что вид функции  $\alpha(X)$  для  $A_1$ такой же, как и для  $A_2$ .

Если удастся описать показанные на рис. 1 спектры p, d и t частиц с помощью выражения (1) при

одном и том же параметре наклона  $C_2$  и при одной и той же A-зависимости, то это может быть свидетельством в пользу тождественности механизма рождения частиц с большими  $p_T$  в p + A и C + A столкновениях.

В [6,7] предлагаются несколько разные виды функции  $\alpha(X)$ . Для уточнения *А*-зависимости применительно к нашим данным были использованы спектры протонов, рожденных под углом  $40^{\circ}$  в p + Aвзаимодействиях с четырьмя ядерными мишенями С, Al, Cu и W. Эти экспериментальные спектры приведены на рис. 2 в виде точек. Для каждого значения импульса рассчитывалось  $X_1$  и  $X_2$ , затем определялись значения  $C_1, C_2$  и вид функции  $\alpha(X_2)$ , при которых достигалось наилучшее описание экспериментальных данных. Кривые на рисунке являются результатом расчета по (1) после нахождения оптимальных параметров. Наилучшее описание данных достигается, если брать  $\alpha(X_2)$  в виде  $(k + X_2)/3$ , где k = 2.40. Это значение близко к величине k = $= 2.45 \pm 0.05$ , полученной нами ранее [2] для рождения  $\pi$ -мезонов под углом 35° (лаб. сист.) в pA взаимодействиях при импульсе 50 ГэВ/с с использованием этих же мишеней. Безразмерный параметр наклона  $C_2$  для данных на рис. 2 равен  $0.172 \pm 0.003$ , параметр C<sub>1</sub>, задающий размерность сечений, равен  $546 \pm 18$  мбарн  $\cdot c^3 / \Gamma$ э $B^2$ .

В случае p + A взаимодействий отношение инклюзивных сечений рождения какой-либо частицы на разных мишенях, после умножения на обратную A-зависимость должно быть,согласно (1), единицей:

$$R = \frac{f_{p+A_{2a}}}{f_{p+A_{2b}}} \times \left(\frac{A_{2b}}{A_{2a}}\right)^{\alpha(X_2)} = 1.$$
 (2)

Здесь  $A_{2a}$  и  $A_{2b}$  – атомные массы ядер двух разных мишеней. На рисунке 3 в виде точек представлены значения R, полученные из отношения сечений рождения протонов во взаимодействиях протонов с вольфрамом и с углеродом. Ширина серой полосы в нижней части рис. 3 отражает возможный уровень систематической ошибки в определении *R*. Эта ошибка была оценена из сравнения отношения спектров, измеренных в эксперименте в разные годы. В пределах предполагаемой точности измерений полученные величины R согласуются с соотношением (2). Для сравнения, отношение R для спектров протонов из p+Wи p+C событий, смоделированных с помощью Fritiof струнной фрагментационной модели (представлена в Geant4 как базовый FTFP генератор [8]), приведено на рис. 3 в виде кривой. Видно, что отношение смоделированных спектров не соответствуют (2).

| Таблица 1. Значения параметра C <sub>1</sub> |                                                             |                       |               |                       |               |               |                       |
|----------------------------------------------|-------------------------------------------------------------|-----------------------|---------------|-----------------------|---------------|---------------|-----------------------|
|                                              | Процесс                                                     | $p+A \rightarrow p+X$ | $p+A \to d+X$ | $p+A \rightarrow t+X$ | $C+A \to p+x$ | $C+A \to d+x$ | $C+A \rightarrow t+x$ |
|                                              | $C_1$ , мбарн $\cdot  \mathrm{c}^3/\Gamma$ э $\mathrm{B}^2$ | $546 \pm 18$          | $185\pm15$    | $56 \pm 13$           | $828\pm35$    | $367\pm10$    | $149\pm17$            |



Рис. 2. Точки – измеренные инвариантные сечения рождения протонов под углом 40° во взаимодействиях 50 ГэВ/с протонов с С, Al, Си и W мишенями. Кривые – результат расчета по (1). На верхней горизонтальной шкале указаны значения поперечного импульса

Рисунки 2 и 3 показывают, что рождение протонов в p + A взаимодействиях происходит в соответствии с предлагаемой в (1) формой зависимости от ядра в виде  $A_2^{\alpha(X_2)}$  и при одном и том же параметре наклона  $C_2$ . Возникает вопрос, а насколько хорошо описываются параметризацией (1) другие приведенные на рис. 1 спектры. Согласно (1), если инклюзивное сечение поделить на  $(A_1^{\alpha(X_1)} \cdot A_2^{\alpha(X_2)})$ , то должна получаться экспоненциальная функция  $\exp(-\Pi/C_2)$ . На рисунке 4 для спектров p, d, t частиц из p + A и C + A взаимодействий представлены распределения по безразмерной величине

$$g(\Pi) = E \frac{d^3 \sigma}{dp^3} \Big/ (C_1 \cdot A_1^{\alpha(X_1)} \cdot A_2^{\alpha(X_2)})$$

При расчете  $g(\Pi)$  во всех случаях бралось  $\alpha(X) = (2.4+X)/3$ . Отметим, что для p+A взаимодействий  $A_1^{\alpha(X_1)} = 1$ . Константы  $C_1$ , задающие размерности

Письма в ЖЭТФ том 111 вып. 5-6 2020



Рис. 3. Величины R, вычисленные для экспериментальных данных (точки) и для смоделированных по FTFP алгоритму [8] (кривая). Ширина серой полосы внизу рисунка отражает уровень возможной систематической погрешности в измерении величины R

сечений, находились заранее при подгонке выражения (1) к экспериментальным данным. Значения  $C_1$ приведены в табл. 1. Пунктирная прямая на всех квадрантах рис. 4 описывает функцию  $\exp(-\Pi/C_2)$ при значении  $C_2 = 0.172$ . Рисунок 4 демонстрирует схожесть в поведении  $g(\Pi)$  для всех частиц и для всех взаимодействий. Параметризация (1) справедлива, только если отсутствует вторичное перерассеяние продуктов квазибинарной реакции на нуклонах ядра. Хотя в работе [2] было показано ослабление влияния ядра на спектры кумулятивных частиц при больших  $p_T$ , полностью исключить это влияние нельзя. Возможно, последнее является причиной наблюдаемого на рис. 4 разброса точек относительно пунктирной прямой.

Основные выводы. Приведены новые данные по рождению под углом  $40^{\circ} p, d, t$  частиц с  $p_T > > 1 \Gamma$ эВ/с в столкновениях протонов и ионов углерода с углеродной и вольфрамовой мишенями. Во всех случаях с ростом импульса наблюдается рост



Рис. 4. Экспоненциальная зависимость сечений от П. Кружки – протоны, квадраты – дейтроны, треугольники – тритоны. Диагональными пунктирными линиями показана функция exp(-П/0.172)

относительного выхода дейтронов и тритонов. В кумулятивной области в C + A взаимодействиях выход дейтронов при больших  $p_T$  становится сопоставимым с выходом протонов.

Спектры p, d, t частиц с большими  $p_T$  в p + A и C + A процессах можно описать выражением (1) с одной и той же формой зависимости от массы участвующих в столкновении ядер и при схожих параметрах наклона  $C_2$ . Поскольку параметризация (1) призвана описать рождение частиц через жесткие квазиби-

нарные столкновения, то хорошее согласие эксперимента с этой параметризацией можно рассматривать как подтверждение сделанного нами ранее заключения [3, 4] о наблюдении прямого выбивания из ядра дейтронов и тритонов в кумулятивных процессах с большими  $p_T$ .

Авторы признательны руководству НИЦ "Курчатовский Институт" – ИФВЭ за поддержку данного исследования, персоналу отделения ускорителя и отделения пучков за эффективную работу У70 и 8-го канала.

Авторы благодарят также А.Т.Головина за неоценимую техническую поддержку при подготовке установки СПИН к проведению измерений.

- 1. В.В. Аммосов, Н.Н. Антонов, А.А. Балдин и др. (эксперимент СПИН), ЯФ **76**(10), 1275 (2013).
- В. В. Аммосов, Н. Н. Антонов, В. А. Викторов и др. (эксперимент СПИН), Ядерная физика и инжиниринг 4(9–10), 773 (2013).
- Н. Н. Антонов, В. А. Викторов, В. А. Гапиенко и др. (эксперимент СПИН), Письма ЖЭТФ 101(10), 746 (2015).
- Н. Н. Антонов, А. А. Балдин, В. А. Викторов и др. (эксперимент СПИН), Письма ЖЭТФ 104(10), 678 (2016).
- В. С. Ставинский, Краткие сообщения ОИЯИ 18, 5 (1986).
- А.А. Балдин, Краткие сообщения ОИЯИ 3(54), 27 (1992).
- А. А. Балдин, Е. Н. Кладницкая, О. В. Рогачевский, Краткие сообщения ОИЯИ 2(94), 20 (1999).
- J. Allison, K. Amako, J. Apostolakis et al. (Geant4 Collaboration), Nuclear Instruments and Methods A 835, 186 (2016).