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Dynamics of particles trapped by dissipative domain walls
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1. Introduction. Nonlinear localized structures

have been attracting much attention in recent time be-

cause of the two reasons. The first one is fundamental

interest to their rich variety in physical systems of differ-

ent natures, including hydrodynamics, plasma physics,

biology and nonlinear optics, see [1–4]. And the second

reason of high interest in nonlinear localized structures

is their potential applications in many fields, including

information optical processing [5, 6], optical fiber com-

munications [7], and optical manipulation [8, 9].

One of the most interesting localized structures

are switching waves, or alternatively “domain walls”,

connecting different stationary spatially homogeneous

states. The direction and the velocity of the domain

wall motion strongly depends on the pumping intensity.

But there is a special value of pumping intensity char-

acterized by zero velocity of the domain wall and it is

called Maxwell point. Near the Maxwell point the do-

main walls are able to create different bound states, such

as bright or dark solitons [10–12].

Another important effect of domain walls is reported

in [13]. It is demonstrated that under biharmonical

pumping the direction and the velocity of the domain

wall can be controlled by changing only the mutual

phase between the harmonics, it is so called “ratchet

effect”.

In this Letter we suggest a new strategy of optical

manipulation of small particles by dissipative domain

walls. This problem is closely related to the manipula-

tion of the particles by dissipative bright solitons consid-

ered in [8, 9]. This Letter is devoted to the formation,

stability and the dynamics of the bound states of the

particles and the domain walls. Special attention is paid

to the influence of the ratchet effect on the processes of

particle capturing and on the possibility to use ratchet

effect for nanoparticles manipulation.

We considered a nonlinear Fabry–Perot resonator

pumped by the coherent light with a dielectric particle,

located in the surface. Such resonators provide bistabil-
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ity and existence of bright solitons and domain walls,

see [10–15]. A particle on the surface of resonator is at-

tracted in the area of higher intensity because of the gra-

dient force [16] and in [8, 9] it is demonstrated that dissi-

pative solitons in considered system are able to steadily

capture particles and transport them in desirable direc-

tion.

The optical field of the considered resonator is de-

scribed in the slow varying amplitude approach by the

Schrödinger equation with the nonlinearity of saturable

type, dissipation and pumping:

∂

∂t
E − iC

∂2

∂x2
E + (γ + iδ + i

α

1 + |E|2
)E =

= (1− fe−(x−ǫ)2/ω2

)P, (1)

where C is diffraction coefficient, E is a complex ampli-

tude of optical field in the resonator, P is an amplitude

of laser pumping, γ is decay rate, α is the nonlinearity

coefficient; δ is laser detuning from resonant frequency,

ǫ is coordinate of the nanoparticle. Parameter ω defines

width of the particle shadow located at x = ǫ, f relates

to the transparency of a particle: if f = 0, then the par-

ticle is transparent and if f = 1, then the particle is

opaque. The viscous motion of particle under the gradi-

ent force is described by the following equation for the

particles’ coordinate:

∂

∂t
ǫ = η

∂

∂x
|E(ǫ)|2. (2)

In our model we use the typical assumption that the

dragging force acting on the particle is proportional to

the gradient of the intensity of the optical field, the co-

efficient η accounts for the interaction strength. Let us

note that for mathematical convenience we use the di-

mensionless variables.

We performed numerical simulations with the pa-

rameters insuring the existence of the domain wall.

We focus on the dynamics of the domain walls with

particle under uniform and time-independent pumping

P (x, t) = P0. Since the uniform states connected by the
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domain walls are not equivalent in the terms of intensi-

ties, the particle location relative to the wall is impor-

tant. In dependence of particles transparency and lo-

cation several scenarios of interaction are possible, from

successful particle trapping as in Fig. 1a, to the full stop

of the domain wall by the particle as in Fig. 1b.

Fig. 1. (Color online) (a) – The particle is captured by the

moving domain wall, f = 0.005, P = 5.1. (b) – The par-

ticle stops the domain wall, f = 0.07, P = 5.2. (c), (d) –

The particle is captured by the domain wall driven in mo-

tion by the ratchet effect with parameters a1 = a2 = 0.1

and Ω = 0.05. For (c) θ = 0 and f = 0.002, for (d) θ =
π

2
and f = 0.005. For all panels other parameters are follow-

ing: α = −10, δ = −0.3, γ = 1, C = 16, η = 0.7, and

ω = 10

Also we consider the influence of the biharmonic sig-

nal on the dynamics of the domain walls with parti-

cles interaction. The time-dependent spatially uniform

pumping has the following form:

P = P0 + a1 sin(Ωt) + a2 sin(2Ωt+ θ), (3)

where P0 is time independent component of the signal,

Ω is frequency of the first harmonic and θ is mutual

phase difference between two harmonics.

Under the action of biharmonic pumping signal it

is possible to control the velocity of domain wall not

only by changing the amplitude of the pump but also

by changing mutual phase of the harmonics, see [13].

This effect is especially important in the vicinity of the

Maxwell point. If time-independent part of pumping in-

tensity is close to Maxwell point, then by changing the

mutual phase θ it is possible to change not only velocity

of the domain wall, but also its direction of propagation.

In case if θ ≈ 0 the domain wall propagates in the direc-

tion of extension of the area of higher intensity, and in

case if θ ≈ π/2 the domain wall moves in the opposite

direction, see Fig. 1c, d.

From Fig. 1c, d it is seen that trapping of particles

by oscillating front is also possible. The domain walls

moving because of the ratchet effect have very slow ve-

locities what makes it possible to achieve high accuracy

of particle manipulation.
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