Home
For authors
Submission status

Archive
Archive (English)
Current
   Volumes 113-120
   Volumes 93-112
      Volume 112
      Volume 111
      Volume 110
      Volume 109
      Volume 108
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
Search
VOLUME 112 (2020) | ISSUE 2 | PAGE 119
Thermal conductivity of graphene oxide: A molecular dynamics study
Abstract
The thermal properties of graphene oxide containing hydroxyl and epoxy functional groups were studied using non-equilibrium molecular dynamics to understand the thermal transport phenomena involved and the structure factors limiting heat conduction. Estimates were given in terms of phonon mean free paths for the reduction in thermal conductivity by interior defects due to scattering. The mechanism of phonon transport in the graphene oxide was discussed. The results indicated that the degree of oxidation can significantly affect the thermal performance of graphene oxide. A low degree of oxidation is necessary to enhance the phonon transport properties of graphene oxide and reduce the probability of phonon-defect scattering. Phonon transport in graphene oxide with a high degree of oxidation is governed by the mean free path of phonons associated with scattering from interior defects. Oxygen-containing functional groups can adversely affect performance and reduce the efficiency of phonon transport in graphene oxide due to phonon mean free paths limited mainly by interior defects. The calculated intrinsic thermal conductivity of graphene oxide at room temperature is about 72 W/m • K with an oxidation degree of 0.35 and about 670 W/m • K with an oxidation degree of 0.05. The phonon mean free path decreases with increasing the degree of oxidation due to enhanced phonon-defect scattering, making the thermal conductivity very sensitive to the concentration of oxygen-containing functional groups.