Фазовые переходы в фрустрированных кобальтитах ${\rm ErBaCo_4O_{7+}}x$ $(x \approx 0, 0.03)$ при небольшом отклонении от стехиометрии

3. А. Казей¹⁾, В. В. Снегирев, М. С. Столяренко

Московский государственный университет им. М.В.Ломоносова, 119992 Москва, Россия

Поступила в редакцию 4 июня 2020 г. После переработки 14 июня 2020 г. Принята к публикации 17 июня 2020 г.

Впервые проведены экспериментальные исследования структурных (метрики решетки) и упругих характеристик в области структурного и магнитного фазовых переходов в кобальтитах ErBaCo₄O_{7+x} с различной термообработкой, отличающихся небольшим избытком кислорода x. Обнаружено, что для отожженного в вакууме стехиометрического образца ErBaCo₄O₇ при структурном переходе параметр $\Delta a/a$ особенности не обнаруживает, параметры b и c испытывают скачки разного знака и разной величины $\Delta b/b \approx 4 \cdot 10^{-3}$ и $\Delta c/c \approx -5 \cdot 10^{-3}$, что приводит к скачку объема $\Delta V/V \approx -1 \cdot 10^{-3}$. При незначительном отклонении от стехиометрии по кислороду меняется характер искажения структуры, а именно, величина анизотропной и знак изотропной деформации. Искажение структуры в стехиометрическом образце сопровождается резким скачком модуля Юнга $\Delta E(T)/E_0 \sim 8 \cdot 10^{-2}$, а в слабо нестехиометрических образцах с $x \sim 0.03$ упругие аномалии в области T_S на порядок уменьшаются. Сравнение упругих аномалий в области температуры магнитного фазового перехода T_N для искаженных образцов с разным отклонением от стехиометрии свидетельствует, что на установление дальнего магнитного порядка в кобальтовой подсистеме влияет, по-видимому, не только искажение структуры, но и наличие беспорядка, вносимого нестехиометрическим кислородом.

 $DOI:\,10.31857/S1234567820150082$

Введение. Редкоземельные (РЗ) кобальтиты $RBaCo_4O_{7+x}$ (R= редкоземельный ион, Ca, Y) демонстрируют необычное магнитное поведение, обусловленное фрустрацией обменных взаимодействий и переменной валентностью в кобальтовой подсистеме [1–6]. Подобные соединения позволяют изучать фундаментальные проблемы магнетизма, такие как нетривиальные основные магнитные состояния и эффекты ближнего порядка, сложные магнитные структуры и индуцированные фазовые переходы.

Слоистые кобальтиты RBaCo₄O_{7+x}, кроме ионов Y и Ca, образуются также с тяжелыми P3 ионами, начиная с Tb. В стехиометрических соединениях с трехвалентным ионом R^{3+} ионы кобальта имеют смешанную валентность Co^{2+} и Co^{3+} в соотношении 3:1 и распределены в структуре неупорядоченно по двум типам тетраэдрических позиций. Соотношение разновалентных ионов Co^{2+}/Co^{3+} в кобальтовой подсистеме можно варьировать с помощью неизовалентного замещения $R^{3+} \rightarrow Ca^{2+}$ или $Co^{2+}/Co^{3+} \rightarrow Zn^{2+}/Al^{3+}$, а также изменением содержания кислорода (7+x). Кристаллическая структу-

ра РЗ кобальтитов при высоких температурах описывается гексагональной $P6_3mc$ (или тригональной P31c) пространственной группой [7–11]. В каркасной кристаллической структуре тетраэдры CoO_4 , объединенные общими углами, образуют упакованные поочередно вдоль оси c треугольные слои и слои Кагоме.

Двумерная решетка Кагоме, состоящая из соединенных углами треугольников, хорошо известна как структурная топология, приводящая к геометрической фрустрации. Фрустрации в магнитной системе часто приводят к вырожденному основному состоянию, а также к отсутствию дальнего магнитного порядка даже при значительных константах обменного взаимодействия [12]. Искажение кристаллической структуры, также как различные слабые взаимодействия, способны частично или полностью снять фрустрации и привести к появлению дальнего магнитного порядка [13].

Y-кобальтит, содержащий один тип магнитных ионов, позволяет изучать поведение фрустрированной Со-подсистемы. При $T_S = 313 \,\mathrm{K}$ он испытывает структурный переход, приводящийся к понижению симметрии от гексагональной до орторомбической (пространственная группа $Pbn2_1$; $a_o \approx a_h$,

¹⁾e-mail: kazei@plms.phys.msu.ru

 $b_o \approx \sqrt{3}a_h$). Этот переход первого рода сопровождается аномалиями упругих, магнитных и транспортных свойств. Так как за счет структурного перехода геометрические фрустрации снимаются, в YBaCo₄O₇ наблюдается сначала появление ближнего магнитного порядка в Со-подсистеме, а затем ниже $T_N \approx$ $\approx 110\,\mathrm{K}$ – трехмерногого антиферромагнитного упорядочения [1] с понижением симметрии до моноклинной Р112₁ [12, 14]. При дальнейшем понижении температуры наблюдается еще один магнитный фазовый переход при $T_{N2} \sim 70\,\mathrm{K}$ [15], который обусловлен спиновой переориентацией в Со-подсистеме [12]. Для других РЗ кобальтитов с магнитными РЗ ионами структура также обнаруживает небольшое искажение, происходящее в виде фазового перехода, приводящего к аномалиям упругих, магнитных и транспортных свойств [16-19]. Критическая температура структурного перехода T_S монотонно понижается при уменьшении радиуса РЗ иона.

В фрустрированных и низкоразмерных системах на установление дальнего магнитного порядка существенно влияют различные слабые взаимодействия и возмущения, такие как небольшое искажение структуры, магнитная анизотропия, беспорядок различной природы и др. Небольшое искажение структуры в стехиометрических РЗ кобальтитах снимает фрустрацию обменных взаимодействий, что сказывается на магнитных фазовых переходах в Со подсистеме при $T_N < T_S$ [13, 20]. Структуры нестехиометрических соединений остаются неискаженными, и фрустрации в системе сохраняются. Как следствие, при понижении температуры постепенно развивается ближний магнитный порядок, для которого длина корреляции не достигает размеров кристаллитов. Поэтому можно ожидать, что характер фазовых переходов и различные физические свойства в слоистых кобальтитах $RBaCo_4O_{7+x}$ в очень сильной степени зависят как от искажения структуры, определяемого избытком кислорода, так, по-видимому, и от магнитной анизотропии РЗ подсистемы.

Структура слоистого кобальтита изучена достаточно подробно в гексагональной фазе и значительно меньше — в искаженной орторомбической фазе. При этом характер изменения параметров решетки (метрика решетки) при структурном переходе практически не исследован. Влияние искажения структуры на поведение фрустрированной Со подсистемы исследовалось для серии Y-кобальтитов с небольшим отклонением от стехиометрии [21]. В частности, было обнаружено, что упругие свойства слоистых кобальтитов YBaCo₄O_{7+x} в очень сильной степени зависят от избытка кислорода. Представляет интерес, на наш

взгляд, исследование слоистых кобальтитов с магнитными РЗ ионами, дающими большой вклад в магнитную анизотропию. В настоящей работе исследуются структурные и магнитные фазовые переходы, а также структурные и упругие характеристики слоистых кобальтитов ${\rm ErBaCo_4O_{7+}}_{x}$ с небольшим контролируемым отклонением от стехиометрии по кислороду.

Образцы и экспериментальная техника. Исследования структурных и упругих свойств проводились на поликристаллических образцах ErBaCo₄O_{7+x}, синтезированных по керамической технологии в три стадии при температурах 900, 1000 и 1100°C с промежуточным перетиранием. Каждая стадия завершалась закалкой образца от 900–950 °C [22]. Для получения требуемого содержания кислорода и его однородного распределения по объему образцы керамики подвергались дополнительной термообработке, которая имеет свою специфику для слоистых кобальтитов [23]. Закаленный образец Qимел небольшой избыток кислорода $x \leq 0.03$, а для получения кислорода с x = 0 образец A отжигался в вакууме при 500°C. Исследовался также образец Т, подвергнутый небольшой дополнительной термообработке – отжигу на воздухе при $t_{tr} \sim 150 \, {\rm K}$ в течении 12 ч. Содержание кислорода в образцах определялось йодометрическим титрованием [24] на оригинальной автоматизированной установке, управляемой компьютерной программой. Конечная точка титрования (точка эквивалентности) регистрировалась по скачку потенциала в растворе в процессе химической реакции путем измерения ЭДС обратимого гальванического элемента.

Рентгенографические исследования в интервале температур (80–300) К проводились на дифрактометре "Гейгерфлекс" (СоК $_{\alpha1,\alpha2}$ излучение без монохроматора) с проточным криостатом. Полнопрофильный анализ рентгенограммы в интервале углов (18–120)° при температуре 300 и 80 К с использованием программы Full_Prof позволил определить значения параметров a,b и c гексагональной и слабо искаженной гексагональной (орторомбической) элементарной ячейки (обозначения для орторомбической ячейки) и их изменение с температурой. Температурные измерения параметров решетки проводились по рефлексам $\{(400)+(260)\}$ и (004) с углами $2\theta_{1,2}\approx 69$ и $2\theta_3\approx 41^\circ$ соответственно.

Модуль Юнга E и коэффициент внутреннего трения q^{-1} измерялись методом составного резонатора на частоте $\sim 110\,\mathrm{kT}$ ц в интервале температур (80–280) на оригинальной автоматизированной установке. Температурные зависимости амплитуд и час-

тот резонанса и антирезонанса, найденные из экспериментальной сглаженной амплитудно-частотной характеристики $A_{sm}(f)$ в области резонанса, позволяют определить изменение модуля Юнга и поглощения (коэффициента внутреннего трения) в широком диапазоне температур.

Экспериментальные результаты и обсуждение. Структурные исследования серии образцов ErBaCo₄O_{7+x}, выполненные в нашей работе, представляют интерес и с точки зрения искажения структуры, снимающего фрустрации, и для выявления природы структурного перехода в семействе РЗ кобальтитов. Для стехиометрического образца ErBaCo₄O₇ все линии на рентгенограмме при комнатной температуре индицируются в рамках гексагональной структуры. На рентгенограмме при T == 80 К наблюдается заметное отличие для ряда рефлексов (наиболее сильно на рефлексах с углами $2\theta \approx 63$ и 69°), чувствительных к ромбическому искажению. Структура образца при $T=80\,\mathrm{K}$ описывается с учетом небольшого ромбического искажения. Расщепление рефлекса $\{(400) + (260)\}$, наиболее чувствительного к ромбическому искажению, напрямую дает величину искажения $\varepsilon_o = (a_0 - b_0/\sqrt{3})/a_0 =$ $=2(d_1^2-d_2^2)/(4d_1^2-d_2^2)\;(d_{1,2}^{-1}=2\sin(heta_{1,2})/\lambda),$ где $heta_1=$ $= \theta_{400}, \; \theta_2 = \theta_{260} -$ Брэгговские углы соответствующих рефлексов. Видно, что при $T=300\,\mathrm{K}$ на излучении $\mathrm{CoK}_{\alpha 1,\alpha 2}$ наблюдается нерасщепленный дублетный рефлекс для $d_1 = d_2$ при $b_0 = a_0 \sqrt{3}$, тогда как при $T=260\,\mathrm{K}$ этот рефлекс обнаруживает расщепление на две линии (рис. 1). При этом высокоугловая компонента расщепленного рефлекса с $2\theta_2$ остается на месте, а возникает дополнительная линия, смещенная на $\Delta(2\theta_1) \approx 0.25^{\circ}$. Расщепление рефлекса с углом $2\theta_{1,2}\approx 69^{\circ}$ возникает скачком при температуре фазового перехода $T_S \approx 280 \, \mathrm{K}$ и уменьшается при понижении температуры до 80 К. Для второго рефлекса (004) угол $2\theta_3 \approx 41^\circ$ скачком возрастает на $\Delta(2\theta_3)\approx 0.2^\circ$ при T_S и продолжает увеличиваться при понижении температуры до 80 К. По рефлексу (004) можно наблюдать двухфазное состояние образца, когда в диапазоне ~ 5 К сосуществуют две фазы.

Относительные изменения $\Delta a/a$ $\Delta b/b$, $\Delta c/c$ (кривые 1 - 3параметров решетки, $\Delta V/V = (\Delta a/a + \Delta b/b + \Delta c/c)$ (кривая 4) объема и $\varepsilon_o = (\Delta a/a - \Delta b/b)$ (кривая 5) степени ромбического искажения с температурой приведены на рис. 2. Для удобства сравнения для всех параметров приведены относительные изменения, например $\Delta a/a = \Delta a(T)/a_0 \ (\Delta a(T) = a(T) - a_0;$ $a_0 = a(T = 300 \,\mathrm{K}))$, нормированные на их значение при $T = 300 \,\mathrm{K}$. Интересно и необычно, что при

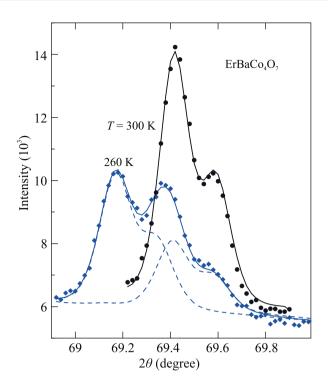


Рис. 1. (Цветной онлайн) Экспериментальный (точки) и рассчитанный (линии) дифракционные пики $\{(400)+(260)\}$ на $\mathrm{CoK}_{\alpha1,\alpha2}$ излучении стехиометрического образца $\mathrm{ErBaCo_4O_7}$ в гексагональной $(T=300\,\mathrm{K})$ и орторомбической $(T=260\,\mathrm{K};$ пунктирные кривые – компоненты расщепленного при искажении пика) фазе

температуре T_S параметр a никакой аномалии не обнаруживает, тогда как параметры b и c испытывают скачки разного знака и разной величины $\Delta b/b \approx 4 \cdot 10^{-3}$ и $\Delta c/c \approx -5 \cdot 10^{-3}$, что приводит к скачку объема $\Delta V/V \approx -1 \cdot 10^{-3}$. С понижением температуры от $T \leq T_S$ параметр c уменьшается, параметр b практически не меняется, а параметр a, наоборот, растет (аномальное тепловое расширение), что приводит к уменьшению степени ромбического искажения $\varepsilon_o(T)$ почти в 2 раза. Для закаленного образца Q с небольшим отклонением от стехиометрии $x \approx 0.03$ температура T_S заметно не меняется, а максимальное изменение параметров $\Delta a/a$, $\Delta b/b$ в диапазоне (80-300) К и, соответственно их скачок, а также степень ромбического искажения ε_o при T_S уменьшаются. Наоборот, для параметра cмаксимальное изменение и скачок уменьшаются почти в два раза, так что изменение объема при структурном переходе меняет знак.

Упругие модули очень чувствительны к фазовым переходам различной природы и их температурные зависимости позволяют регистрировать как температуру перехода, так и влияние на переход различ-

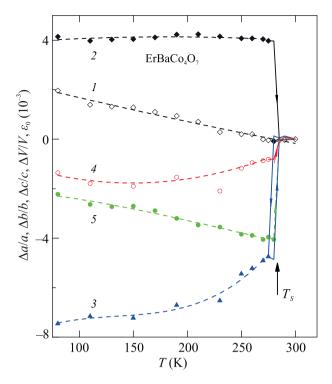


Рис. 2. (Цветной онлайн) Относительные изменения параметров решетки (кривая $1-\Delta a/a$, $2-\Delta b/b$, $3-\Delta c/c$), объема $\Delta V/V=(\Delta a/a+\Delta b/b+\Delta c/c)$ (кривая 4) и степени ромбического искажения $\varepsilon_o=(\Delta a/a-\Delta b/b)$ (кривая 5) с температурой стехиометрического образца $\mathrm{ErBaCo_4O_7}$. Все зависимости нормированы на значение параметров при $T=300~\mathrm{K}$

ных факторов [19]. В работе исследовались температурные зависимости модуля Юнга E(T) и внутреннего трения $q^{-1}(T)$ закаленного Q, отожженного A и подвергнутого дополнительной термообработке T образцов $ErBaCo_4O_{7+x}$, близких к стехиометрическим. Для образцов с различной термообработкой, которые отличаются величиной и характером искажения структуры, температурные зависимости $\Delta E(T)/E_0$ обнаруживают существенно различное поведение. Для удобства сравнения на рисунках приведены относительные изменения модуля $\Delta E(T)/E_0$ ($\Delta E(T)=E(T)-E_0$; $E_0=E(T=300~{\rm K})$), нормированные на значение E_0 при $T=300~{\rm K}$.

Для отожженного стехиометрического образца A на зависимости $\Delta E(T)/E_0$ наблюдается резкий скачок $\sim 8 \cdot 10^{-2}$ при температуре T_S структурного фазового перехода (рис. 3). Переход происходит с гистерезисом ~ 3 K, температура перехода, определенная по максимуму $(1/E_0)dE/dT$ производной модуля, составляет $T_{Su}=278$ K при нагреве и $T_{Sd}=275$ K при охлаждении (вставка на рис. 3). Переход сопровождается двойным максимумом на зависимости внут-

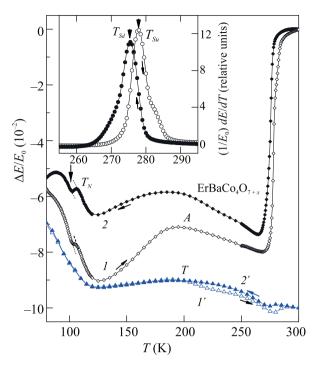


Рис. 3. (Цветной онлайн) Зависимость относительной величины модуля Юнга $\Delta E/E_0$ от температуры для образцов ${\rm ErBaCo_4O_{7+}}_x$ с небольшим отклонением от стехиометрии (кривые 1, 2 — отожженный в вакууме образец A; пунктиром показана экстраполяция температурного хода вне аномалии; кривые 1', 2' — образец T с дополнительной термообработкой) при нагреве (светлые точки) и охлаждении (темные точки). На вставке показана зависимость от температуры $(1/E_0)dE/dT$ производной модуля Юнга в области структурного перехода для стехиометрического образца A

реннего трения $q^{-1}(T)$ при T_S и $T_d = 220 \,\mathrm{K}$ (рис. 4). Такое поведение обычно наблюдается при структурных фазовых переходах, где низкотемпературный максимум поглощения связан с релаксацией структурных доменов под действием упругих напряжений звуковой волны. На закаленном образце Q аномалии на кривых $\Delta E(T)/E_0$ и $q^{-1}(T)$ при T_S выражены очень слабо и наблюдаются только на производной модуля Юнга $(1/E_0)dE/dT$. Более того, небольшая дополнительная термообработка отожженного образца (отжиг при $t_{tr} \sim 150 \, \mathrm{K}$ в течении 12 ч) значительно съедает аномалии на кривых $\Delta E(T)/E_0$ и $q^{-1}(T)$ при T_S (образец T, кривые 1', 2' на рис. 3и 4), тогда как сама температура T_S меняется незначительно. Согласно нашим рентгеновским данным при отклонении от стехиометрии величина ромбического искажения меняется незначительно, а наибольшее изменение испытывает объемная аномалия, которая меняет знак. Известно, что вклады изотроп-

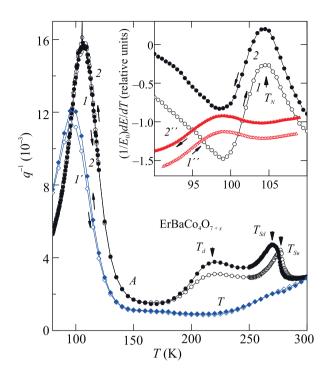


Рис. 4. (Цветной онлайн) Температурная зависимость внутреннего трения $q^{-1}(T)$ для образцов ${\rm ErBaCo_4O_{7+x}}$ с небольшим отклонением от стехиометрии (кривые $1,\ 2$ – отожженный в вакууме образец A; кривые $1',\ 2'$ – образец T с дополнительной термообработкой) при нагреве (светлые точки) и охлаждении (темные точки). На вставке показана зависимость от температуры $(1/E_0)dE/dT$ производной модуля Юнга в области магнитного перехода для (кривые $1,\ 2$) отожженного A и (кривые $1'',\ 2''$) закаленного Q образцов. Кривые для различных образцов смещены по вертикальной оси на произвольную величину

ной и анизотропной спонтанных деформаций при фазовом переходе в модуль Юнга, также как и в модуль сдвига, различаются [25, 26]. Это позволяет объяснить такое резкое изменение величины скачка на кривой $\Delta E(T)/E_0$ при небольшом отклонении от стехиометрии.

Искажение кристаллической структуры в стехиометрическом образце $ErBaCo_4O_7$ приводит к снятию фрустраций и последующему установлению дальнего магнитного порядка в кобальтовой подсистеме. В этом случае можно ожидать появление явно выраженного магнитного фазового перехода и аномалий упругих свойств системы при T_N . Действительно, для отожженного стехиометрического образца A на кривой $\Delta E(T)/E_0$ наблюдается также четкая, но на порядок меньшая аномалия при $T_N = 105 \, \mathrm{K}$, сопровождаемая сильным асимметричным (двойным) максимумом поглощения на кривой

 $q^{-1}(T)$ (кривые 1, 2 на рис. 3, 4). В области магнитного фазового перехода на фоне монотонного изменения $\Delta E(T)/E_0$ наблюдаются скачки модуля Юнга, имеющие место как при нагреве, так и при охлаждении, и воспроизводящиеся при повторном термоциклировании. С учетом температурного хода на кривых $\Delta E(T)/E_0$ (пунктиром показана экстраполяция температурного хода в области T_N) величины скачков при охлаждении и нагреве практически совпадают и составляют $\delta E(T_N)/E_0 \approx 0.5 \cdot 10^{-2}$. Точка фазового перехода T_N соответствует скачку на зависимости $\Delta E(T)/E_0$ или максимуму производной $(1/E_0)dE/dT$ модуля Юнга по температуре (вставка на рис. 4). Эти аномалии упругих свойств обусловлены магнитным фазовым переходом второго рода, температура T_N которого близка к литературным данным для Ү-кобальтита.

Для закаленного образца Q (вставка на рис. 4, кривые I'', 2''), также как и для образца T, с небольшими отклонениями от стехиометрии аномалия при T_N видна только на температурной производной модуля Юнга. При этом величина аномалии на кривой $(1/E_0)dE/dT$ и характерная температура уменьшаются. Отметим также уменьшение характерной температуры и величины максимума на кривой $q^{-1}(T)$ для образцов Q и T. Этот максимум, как было ранее обнаружено, пропадает в сильно разбавленных кобальтитах RBaCoZn₃O_{7+x}, что подтверждает его связь с магнитным упорядочением в Со подсистеме [27].

Модификация упругих свойств образцов Q и T коррелирует с небольшим отклонением x < 0.03 от стехиометрии из-за поглощения нестихиометрического кислорода при дополнительной термообработке. Таким образом, структура слабо нестехиометрических Er образцов, в отличие от Y-кобальтитов, искажена и фрустрации сняты, но магнитный переход обнаруживает тенденцию к подавлению.

Заключение. Проведенные исследования обнаруживают сильное влияние небольшого отклонения от стехиометрии как на структурный и магнитный фазовые переходы, так и на физические свойства слоистого кобальтита ${\rm ErBaCo_4O_{7+x}}$. Согласно рентгеновским исследованиям, для стехиометрического образца ${\rm ErBaCo_4O_7}$ при структурном переходе параметр $\Delta a/a$ особенности не обнаруживает, параметры b и c испытывают скачки разного знака и разной величины, что приводит к изменению отношения c/a_{av} для структуры и отрицательному скачку объема $\Delta V/V \approx -1 \cdot 10^{-3}$. В настоящее время отсутствует общепринятое мнение о механизме структурного перехода в ${\rm P3}$ кобальтитах и обсуждаются раз-

личные модели, такие как зарядовое упорядочение в Со-подсистеме, оптимизация ненасыщенных связей Ва координационного многогранника или нарушение условия толерантности для структуры. Полученные данные об искажении структуры при фазовом переходе свидетельствуют об уменьшении отношения параметров решетки c/a_{av} , которое может быть важным фактором для устойчивости структуры.

Искажение структуры в стехиометрическом образце сопровождается резким скачком модуля Юнга $\Delta E(T)/E_0 \sim 8 \cdot 10^{-2}$. В нестехиометрических соединениях из-за нерегулярного положения ионов избыточного (или дефицитного) кислорода в решетке структура становится дефектной, что сказывается на характере искажения структуры, а именно уменьшается анизотропная деформация и меняется знак объемной (изотропной) деформации. В результате аномалии упругих характеристик в области T_S резко уменьшаются. Это согласуется с изменением соотношения изотропной и анизотропной деформации при структурном переходе при небольшом отклонении от стехиометрии.

Снятие фрустраций при искажении должно способствовать последующему установлению дальнего магнитного порядка в кобальтовой подсистеме. Для стехиометрического Er-кобальтита наблюдаются выраженные аномалии магнитных и упругих свойств в области температуры магнитного фазового перехода в Со-подсистеме при $T_N < T_S$ [13, 21, 28]. При этом температурные зависимости модулей Юнга и коэффициентов внутреннего трения в области T_N аналогичны зависимостям для YBaCo₄O₇ [21], т.е. основную роль в формировании магнитного поведения РЗ кобальтитов также играет кобальтовая подсистема. Структуры нестехиометрических образцов Q и T для $x \leq 0.03$ тоже являются искаженными, но наличие беспорядка, вносимого нестехиометрическим кислородом, по-видимому, препятствует установлению дальнего магнитного порядка даже в искаженной фрустрированной системе. Как следствие, при понижении температуры постепенно развивается ближний магнитный порядок, для которого длина корреляции не достигает размеров кристаллитов.

- L. C. Chapon, P. G. Radaelli, H. Zheng, and J. F. Mitche, Phys. Rev. B 74, 172401 (2006).
- P. Manuel, L. C. Chapon, P. G. Radaelli, H. Zheng, and J. F. Mitchell, Phys. Rev. Lett. 103, 037202 (2009).
- W. Schweika, M. Valldor, and P. Lemmens, Phys. Rev. Lett. 98, 067201 (2007).
- 4. V. Caignaert, V. Pralong, A. Maignan, and B. Raveau, Solid State Commun. **149**, 453 (2009).

- V. Caignaert, V. Pralong, V. Hardy, C. Ritter, and B. Raveau, Phys. Rev. B 81, 094417 (2010).
- K. Singh, V. Caignaert, L.C. Chapon, V. Pralong, B. Raveau, and A. Maignan, Phys. Rev. B 86, 024410 (2012).
- E. A. Juarez-Arellano, A. Friedrich, D. J. Wilson, L. Wiehl, W. Morgenroth, B. Winkler, M. Avdeev, R. B. Macquart, and C. D. Ling, Phys. Rev. B 79, 064109 (2009).
- 8. E. V. Tsipis, J. C. Waerenborgh, M. Avdeev, and V. V. Kharton, J. Solid State Chem. **182**, 640 (2009).
- 9. Л. П. Козеева, М. Ю. Каменева, А. И. Смоленцев, В. С. Данилович, Н. В. Подберезская, ЖСХ **6**, 1108 (2008).
- A. Huq, J.F. Mitchell, H. Zheng, L.C. Chapon, P.G. Radaelli, K.S. Knight, and P.W. Stephens, J. Solid State Chem. 179, 1136 (2006).
- D. D. Khalyavin, L. C. Chapon, P. G. Radaelli, H. Zheng, and J. F. Mitchell, Phys. Rev. B 80, 144107 (2009).
- D. D. Khalyavin, P. Manuel, B. Ouladdiaf, A. Huq,
 P. W. Stephens, H. Zheng, J. F. Mitchell, and
 L. C. Chapon, Phys. Rev. B 83, 094412 (2011).
- M. Markina, A.N. Vasiliev, N. Nakayama, T. Mizota, and Y. Yed, J. Magn. Magn. Mater. 322, 1249 (2010).
- M. J. R. Hoch, P. L. Kuhns, S. Yuan, T. Besara, J. B. Whalen, T. Siegrist, A. P. Reyes, J. S. Brooks, H. Zheng, and J. F. Mitchell, Phys. Rev. B 87, 064419 (2013).
- M. Soda, Y. Yasui, T. Moyoshi, M. Sato, N. Igawa, and K. Kakurai, J. Phys. Soc. Jpn. 75, 054707 (2006).
- 16. N. Nakayama, T. Mizota, Y. Ueda, A. N. Sokolov, and A. N. Vasiliev, J. Magn. Magn. Mater. **300**, 98 (2006).
- V. Caignaert, A. Maignan, K. Singh, Ch. Simon,
 V. Pralong, B. Raveau, J. F. Mitchell, H. Zheng, A. Huq,
 and L. C. Chapon, Phys. Rev. B 88, 174403 (2013).
- A. Maignan, V. Caignaert, D. Pelloquin, S. Hébert, V. Pralong, J. Hejtmanek, and D. Khomski, Phys. Rev. B 74, 165110 (2006).
- 19. З. А. Казей, В.В. Снегирев, А.С. Андреенко, Л. П. Казеева, ЖЭТФ **140**, 282 (2011).
- M. Valldor, Y. Sanders, and W. Schweika, J. Phys.: Confer. Ser. 145, 012076 (2009).
- 21. З. А. Казей, В. В. Снегирев, Л. П. Козеева, М. Ю. Каменева, А. Н. Лавров, ЖЭТФ **153**, 782 (2018).
- Л.П. Козеева, М.Ю. Каменева, А.Н. Лавров, Н.В. Подберезская, Неорганические материалы 49, 668 (2013).
- А. В. Алексеев, М. Ю. Каменева, Л. П. Козеева, А. Н. Лавров, Н. В. Подберезская, А. И. Смоленцев, А. Н. Шмаков, Известия РАН. Сер. физическая 77, 173 (2013).

- 24. M. Karppinen, M. Matvejeff, K. Salomaki, and H. Yamauchi, J. Mater. Chem. 12, 1761 (2002).
- M. Fukuhara, M. Yagi, and A. Matsuo, Phys. Rev. B 65, 224210 (2002).
- 26. L. R. Testardi, Phys. Rev. B 12, 3849 (1975).
- 27. З. А. Казей, В. В. Снегирев, Л. П. Козеева, М. Ю. Каменева, ЖЭТФ **149**, 155 (2016).
- 28. Z.A. Kazei, V.V. Snegirev, A.A. Andreenko, L.P. Kozeeva, and M.Yu. Kameneva, Solid State Phenomena **233–234**, 145 (2015).