Нарушение кубической симметрии в редкоземельных додекаборидах с динамическими зарядовыми страйпами¹⁾

К. М. Красиков⁺²⁾, А. Н. Азаревич⁺, В. В. Глушков⁺, С. В. Демишев^{+*}, А. Л. Хорошилов⁺, А. В. Богач⁺, Н. Ю. Шицевалова[×], В. Б. Филиппов[×], Н. Е. Случанко⁺

+ Институт общей физики им. А. М. Прохорова РАН, 119991 Москва, Россия

*Национальный исследовательский университет "Высшая школа экономики", 101000 Москва, Россия

 $^{\times}$ Институт проблем материаловедения им. И. М. Францевича Национальной академии наук Украины, 03142 Киев, Украина

Поступила в редакцию 25 августа 2020 г. После переработки 5 сентября 2020 г. Принята к публикации 5 сентября 2020 г.

При температурах $T \leq 150 \, {\rm K}$ обнаружен эффект понижения симметрии для параметров электронного транспорта в редкоземельных додекаборидах ${\rm RB}_{12}~({\rm R}={\rm Ho}, {\rm Er}, {\rm Tm}, {\rm Lu})$ с гцк структурой кристаллической решетки. Показано, что при переходе в разупорядоченную фазу каркасного стекла ниже $T^* \sim 60 \, {\rm K}$ резко усиливается анизотропия магнетосопротивления, причем этот эффект наблюдается в магнитных и немагнитных редкоземельных додекаборидах, включая твердые растворы ${\rm R}_x {\rm Lu}_{1-x} {\rm B}_{12}$ с сильным беспорядком замещения. Обсуждается роль электронного фазового расслоения (зарядовые страйпы вдоль направления $\langle 110 \rangle$) в этих металлах с открытыми траекториями на поверхности Ферми.

DOI: 10.31857/S1234567820190040

1. Введение. Сильно коррелированные электронные системы (СКЭС) представляются перспективными как для практических применений, так и с точки зрения исследований фундаментальных аспектов физики конденсированного состояния [1–3]. В частности, наличие в СКЭС электронной и структурной неустойчивостей, возникающих вследствие конкуренции между различными активными степенями свободы, часто приводит к появлению сложных фазовых диаграмм, аномалиям свойств и анизотропии характеристик [1]. Анализ природы аномалий в СКЭС, таких, как электронный нематический эффект, зарядовые страйпы и др. (см., например, [1– 4]), часто оказывается затруднен вследствие сложного химического состава и низкой симметрии кристаллической структуры. В то же время, среди различных СКЭС выделяется семейство редкоземельных (P3) додекаборидов RB₁₂, в которых электронная и структурная неустойчивости наблюдаются в соединениях со сравнительно простой гцк решеткой.

РЗ додекабориды кристаллизуются в структуре типа NaCl, в узлах первого типа находятся кластеры B₁₂, в узлах второго типа – атомы металла. Среди РЗ додекаборидов LuB₁₂ является ре-

перным немагнитным соединением с полностью заполненной 4f оболочкой (конфигурация $4f^{14}$), тогда как HoB_{12} $(4f^{10})$, ErB_{12} $(4f^{11})$ и TmB_{12} $(4f^{12})$ являются антиферромагнитными (АФ) металлами с температурами Нееля $T_N = 7.3, 6.7$ и $3.3 \,\mathrm{K}$ соответственно [5]. Недавние исследования особенностей кристаллической структуры и анизотропии магнетосопротивления (MC) в LuB₁₂ [6-8] позволили обнаружить формирование динамических зарядовых страйпов вдоль направлений (110), что обусловлено динамическим кооперативным эффектом Яна-Теллера на кластерах $[B_{12}]^{2-}$ и связанной с этим модуляцией степени гибридизации зонных 5d-2p состояний. Анизотропия МС, предположительно обусловленная зарядовыми страйпами, также была обнаружена в АФ и парамагнитной фазах твердых растворов замещения Ho_xLu_{1-x}B₁₂ различных составов [9-11] и Tm_{1-x}Yb_xB₁₂ [12]. Подчеркнем, что филаментарное распределение электронной плотности вследствие неустойчивости борного каркаса является общим для всех РЗ додекаборидов (см., например, [13] для TmB₁₂).

Классический сценарий возникновения анизотропии MC в металлах при низких температурах связан с наличием открытых траекторий на поверхности Ферми (ПФ) [14,15]. При этом в пределе сильного поля ($\omega_c \tau \gg 1$, ω_c – циклотронная частота, τ – время релаксации) наличие открытых траекторий на

 $^{^{1)}\}mathrm{Cm.}$ дополнительные материалы к данной статье на сайте нашего журнала www.jetpletters.ac.ru.

²⁾e-mail: krasikokirill@yandex.ru

Рис. 1. (Цветной онлайн) (a), (b) – Температурные зависимости удельного сопротивления для ряда додекаборидов RB₁₂. На панели (a) дополнительно показана зависимость для Lu^{nat}B₁₂ в магнитном поле $\mathbf{H} = 80 \,\mathrm{k}$ Э с ориентацией $\mathbf{H} \parallel [001]$ (синяя кривая). (c) – Полевые зависимости MC при ориентацией $\mathbf{H} \parallel [001]$ для LuB₁₂ с различными изотопами бора, пунктиром показаны линейные в двойном логарифмическом масштабе участки кривых (степенная зависимость вида $\Delta \rho / \rho \sim H^{\alpha}$). (d) – Температурные зависимости магнитного вклада в удельное сопротивление в поле $H = 80 \,\mathrm{k}$ Э с ориентацией $\mathbf{H} \parallel [001]$ для кристаллов LuB₁₂ с различными изотоп-составом по бору. Пунктирными кривыми показана аппроксимация соотношением (2)

ПФ может приводить к огромной анизотропии MC при изменении ориентации магнитного поля с переходом от замкнутых к открытым орбитам электронов [14, 15]. Поскольку в RB₁₂ дырочный лист ПФ в форме "монстра" [16] имеет несколько групп открытых траекторий [17–19], представляет интерес выяснить природу анизотропии MC в RB₁₂ и провести сравнение с аномалиями MC, обнаруженными ранее для меди с аналогичной топологией ПФ.

С этой целью в работе представлены результаты измерений температурных, полевых и угловых зависимостей MC и выполнен анализ вкладов в магнитных и немагнитных додекаборидах RB_{12} (R = Ho, Er, Tm, Lu) и в твердых растворах замещения на их основе. Мы покажем, что обнаруженное понижение симметрии электронного транспорта при низких и промежуточных температурах не может быть связано исключительно с топологией ПФ в этих металлах со структурной и электронной неустойчивостями. Взаимосвязь между флуктуациями электронной плотности и топологией ПФ предположительно является фактором, определяющим широкий температурный диапазон и значительную амплитуду наблюдаемой анизотропии.

2. Образцы и экспериментальная установка. Монокристаллические образцы RB₁₂ были выращены методом бестигельной индукционной зонной плавки в инертной атмосфере в ИПМ НАН Украины, методика получения кристаллов детально описана в [20]. Измерения удельного сопротивления в магнитном поле до 80 кЭ при гелиевых и промежуточных температурах были выполнены на установке для гальваномагнитных измерений в ИОФ РАН. Для измерений на постоянном токе использовалась стандартная 4-х контактная схема с коммутацией тока через образец. Предварительно ориентированные образцы монтировались на столик с возможностью вращения вокруг токового направления. Экс-

3. Результаты и обсуждение. На рисунке 1a, b приведены температурные зависимости удельного сопротивления для ряда РЗ додекаборидов. Остаточное сопротивление оказывается минимальным в LuB_{12} (~0.15 мкОм · см) и возрастает на порядок величины в антиферромагнетиках HoB₁₂, ErB₁₂ и ${\rm Tm}B_{12}$ вследствие магнитного рассеяния носителей заряда на РЗ ионах (см. рис. 1b). Во внешнем магнитном поле в LuB₁₂ наблюдается значительный рост сопротивления при температурах ниже $T^* \sim 60 \,\mathrm{K}$, причем амплитуда положительного МС в поле 80 кЭ достигает значений $\Delta \rho / \rho \sim 5.5$ (рис. 1a). На рисунке 1с приведены полевые кривые МС при температурах 4.2, 10 и 35 K, полученные для LuB₁₂ с различным изотоп-составом по бору для Н [[001]. Как видно из рис. 1с, кривые хорошо спрямляются в двойных логарифмических координатах и характеризуются степенной зависимостью вида $\frac{\Delta \rho}{\rho} \sim H^{\alpha}$ с $\alpha = 1.7-1.8$. Отметим, что столь сильный рост MC без насыщения во внешнем магнитном поле в рамках классической физики металлов (см. [14, 15, 21]) должен свидетельствовать об открытых траекториях вдоль (110) для направления $\mathbf{H} \| [001]$.

Для уточнения направлений внешнего магнитного поля, отвечающих открытым и замкнутым траекториям на поверхности Ферми в LuB₁₂, в работе было проведено моделирование ПФ и анализ траекторий в обратном пространстве, возникающих для различных направлений **H**. По данным измерений эффекта де Гааза –ван Альфена [18, 19] в LuB₁₂ нами были скорректированы сечения многосвязной дырочной ПФ и восстановлена модельная ПФ. При этом использовалась классическая формула [15]

$$E(\mathbf{p}) = \alpha \left\{ 3 - \cos\left(\frac{ap_x}{\hbar}\right) \cos\left(\frac{ap_y}{\hbar}\right) - \cos\left(\frac{ap_y}{\hbar}\right) \cos\left(\frac{ap_z}{\hbar}\right) \cos\left(\frac{ap_z}{\hbar}\right) + \beta \left[3 - \cos\left(\frac{ap_x}{\hbar}\right) - \cos\left(\frac{ap_y}{\hbar}\right) - \cos\left(\frac{ap_y}{\hbar}\right) - \cos\left(\frac{ap_z}{\hbar}\right)\right] + \delta \left[1 - \cos\left(\frac{ap_x}{\hbar}\right) \cos\left(\frac{ap_y}{\hbar}\right) \cos\left(\frac{ap_z}{\hbar}\right)\right] \right\} = \zeta_0 \quad (1)$$

с уточненными значениями параметров $\frac{\zeta_0}{\alpha} = 4.1;$ $\beta = 0.1; \delta = 0.28 (p_x, p_y, p_z)$ – компоненты импульса, a – постоянная решетки, \hbar – постоянная Планка). Результаты разделения на открытые и замкну-

Письма в ЖЭТФ том 112 вып. 7-8 2020

Рис. 2. (Цветной онлайн) Схематичное изображение направлений вектора **H** магнитного поля для П Φ LuB₁₂, приводящих к открытым траекториям (желтые области), только замкнутым траекториям (красные области) и замкнутым, но распространяющимся на 10 и более зон Бриллюэна в обратном пространстве траекториям (оранжевые области). Стрелками обозначены основные направления в гцк решетке

тые траектории при различных направлениях Н и значениях p_z (ось $z \| \mathbf{H}$) приведены на рис. 2. Как видно из рис. 2, в окрестности направлений (001) и (110)в широком слое p_z наблюдаются открытые и замкнутые траектории, тогда как строго вдоль (001) в соответствии с предсказаниями [15] имеются лишь замкнутые траектории (детали представлены в дополнительном материале на рис. S1). Суммируя результаты расчетов, отметим, что траектории при **H**||(110) оказываются замкнутыми практически во всем диапазоне значений p_z (орбиты типа "собачья кость" [12]) и не дают вклада в тензор проводимости. Отметим также, что аналогичный эффект был обнаружен ранее для меди [22], где при Н [[110] наблюдается огромный провал на кривых МС (см. в дополнительном материале данные моделирования для меди (рис. S2 и S3) в сравнении с экспериментальными результатами [22]). Причем такая особенность наблюдается несмотря на наличие открытых траекторий в узком слое при больших p_z (так называемые лимонные орбиты). В широкой окрестности (111), включая и сами эти направления, в LuB₁₂ регистрируются только замкнутые траектории. Подчеркнем, что выводы, сделанные по результатам моделирования (рис. 2), применимы ко всем РЗ додекаборидам в силу сходства их ПФ, учитывая общие направления и близкие размеры перемычек "монстра" вдоль (111).

[001]

Рис. 3. (Цветной онлайн) Угловые зависимости удельного сопротивления LuB_{12} (a), (b) и $Ho_xLu_{1-x}B_{12}$ (c) в магнитном поле H = 80 кЭ. Сплошными линиями на панелях (a), (b) показана аппроксимация пика MC в окрестности $\mathbf{H} \| [00\bar{1}]$ формулой (3) (оранжевые кривые). (d) – Температурная зависимость параметра B_0 в соотношении (3), определенного из аппроксимации на панелях (a), (b)

Основываясь на приведенных выше результатах моделирования, при измерениях МС наиболее важными представляются эксперименты с вращением кристаллов RB_{12} вокруг оси $I \parallel [1\overline{1}0]$, в которых вектор Н проходит все три основных направления в гцк решетке (см. рис. 2). Такие угловые измерения сопротивления были выполнены нами в магнитном поле 80 кЭ для LuB₁₂ в широком диапазоне температур 4.2-100 К (см. рис. 3a, b), для составов Ho_xLu_{1-x}B₁₂ с 0 < $x \le 1$ (рис. 3с, см. также рис. S4 в дополнительном материале), и при температурах выше T_N для A Φ соединений TmB₁₂ (рис. 4a, b) и ErB₁₂ (рис. 4c, d). Отметим, что проведенные нами исследования эффекта Холла позволяют также оценить параметр $\omega_c \tau$, который для лучших кристаллов LuB₁₂ в магнитном поле 100 к Э достигает значений $\omega_c \tau \sim 1$ (см. рис. S5 в дополнительном материале) и, таким образом, режим слабого поля $\omega_c \tau < 1$ реализуется в поле до 80кЭ для всех исследованных нами кристаллов магнитных и немагнитных додекаборидов. Это хорошо согласуется с оценками характерных длин для лучшего кристалла LuB₁₂: длина свободного пробега $l \sim 350$ Å при T = 4.2 K оказывается заметно меньше ларморовского радиуса $r_L\,=\,780\,{\rm A}$ в поле 80 кЭ, и существенно меньше связанной с переходом в соседнюю зону Бриллюэна длины траектории $L \sim 6800$ Å (изменение волнового вектора на $2\pi/a$).

Как видно из рис. 3, 4, угловые зависимости характеризуются значительной анизотропией сопротивления как для немагнитного LuB₁₂, так и для магнитных додекаборидов, причем в окрестности $\mathbf{H} \| [00\overline{1}]$ на кривых $\rho(\varphi)$ для всех RB_{12} наблюдается широкий пик ($\Delta \varphi \sim 100^{\circ}$, рис. 3, 4), что противоречит предсказаниям [14, 15]. В случае LuB₁₂, характеризующегося максимальными среди RB₁₂ значениями $\omega_c \tau \leq 1$, в окрестности $\mathbf{H} \| [00\bar{1}]$ и $\mathbf{H} \| [110]$ при низких температурах в сильном магнитном поле регистрируются также узкие провалы малой амплитуды, которые, напротив, соответствуют результатам расчетов [14, 15], и могут быть связаны с замкнутыми траекториями на ПФ вдоль этих направлений (см. рис. 2). Отметим, что угловые зависимости с похожими особенностями огромной амплитуды $(\Delta \rho / \rho \sim 500)$ наблюдались ранее для меди [22], где также реализуется ПФ в виде "монстра" (см. сравнение кривых на рис. S2 в дополнительном материале). С ростом температуры до $T^* \sim 60 \,\mathrm{K}$ указанные

Рис. 4. (Цветной онлайн) Полевые (a), (c) и угловые (b), (d) зависимости удельного сопротивления для додекаборидов TmB₁₂ при *T* = 4.2 K (панели (a) и (b)) и ErB₁₂ при *T* = 10 K (панели (c) и (d))

провалы, связанные с топологией П Φ в LuB₁₂, практически пропадают, однако максимум в окрестности $\mathbf{H} || [00\bar{1}]$ на кривых $\rho(\varphi)$ сохраняется (см. рис. 3a).

Для оценки температурного интервала, в котором наблюдается анизотропия MC, достигающая максимальных значений для $\mathbf{H} \| [00\bar{1}]$, положительный магнитный вклад $\Delta \rho = \rho_{80 \, \mathrm{kOe}} - \rho_0$ (см. рис. 1a), найденный для кристаллов LuB₁₂ различного изотопсостава, аппроксимировался в работе эмпирическим соотношением

$$\Delta \rho = \Delta \rho_0 - A/T \cdot e^{-T_0/T} \tag{2}$$

(на рис. 1d фиты показаны пунктиром). Как видно из рис. 1d, $\Delta \rho$ в LuB₁₂ наиболее резко растет ниже $T^* \sim 60 \,\mathrm{K}$, причем этот магнитный вклад сохраняется вплоть до высоких температур. Соотношение (2) с параметром $T_0 \sim 140-180 \,\mathrm{K}$, близким к эйнштейновской температуре $\theta_E \sim 150-170 \,\mathrm{K}$, найденной из структурных и тепловых измерений [8], повидимому, характеризует усиление рассеяния носителей заряда на квазилокальных колебаниях ионов Lu³⁺ с ростом температуры. Для анализа параметров максимума на угловых кривых $\rho(\varphi)$ в окрестности [001] нами использовалось полученное в [13, 14] соотношение вида

$$\rho = \rho_0 / (1 + B_0 (\varphi - \varphi_0)^2)$$
(3)

(результаты аппроксимации показаны сплошными линиями на рис. За, b для LuB_{12} и на рис. S4 в дополнительном материале для $Ho_{0.5}Lu_{0.5}B_{12}$). Как видно из рис. 3d, амплитуда пика резко увеличивается, а пирина уменьшается при переходе в разупорядоченную фазу каркасного стекла ниже $T^* \sim 60 \text{ K}$ [23].

При обсуждении характера аномалий на угловых кривых в додекаборидах с магнитными ионами Но, Ег и Тт отметим, что в парамагнитном состоянии этих металлов доминирующим является практически изотропный отрицательный вклад в МС (см. рис. 4а–с, а также [9, 10, 24]. Отрицательная спинполяронная компонента МС в магнитных RB₁₂ была обнаружена ранее в [25] и связана с рассеянием носителей с переворотом спина на локализованных магнитных моментах РЗ ионов. Таким образом, уменьшение анизотропии MC в RB₁₂ с магнитными ионами объясняется значительным уменьшением длины свободного пробега и, соответственно, параметра $\omega_c \tau$ вследствие сильного магнитного рассеяния. Очевидно, что как магнитное рассеяние и рассеяние, связанное с беспорядком замещения в $Ho_xLu_{1-x}B_{12}$ (рис. 3с) и в $Tm_{1-x}Yb_xB_{12}$ [12], так и электрон-фононное рассеяние при промежуточных температурах резко уменьшают длину пробега носителей. В результате этого в режиме слабого поля $(\omega_c \tau \ll 1)$ эффекты, обусловленные топологией П Φ , не могут приводить к возникновению анизотропного вклада в МС в этих металлах. Напротив, взаимодействие внешнего магнитного поля с динамическими зарядовыми страйпами [6-12] представляется наиболее вероятным механизмом, обусловливающим наблюдаемое нами нарушение симметрии при низких и промежуточных температурах в РЗ додекаборидах. В то же время, поскольку картина анизотропии MC в RB₁₂ оказывается подобной той, которая ожидается для данной ПФ в классической теории [14, 15] при $\omega_c \tau \gg 1$, по-видимому, следует предположить, что формирование динамических страйпов также связано с топологией ПФ. Действительно, поскольку обусловленное динамическим эффектом Яна-Теллера периодическое изменение 5*d*-2*p* гибридизации зонных состояний должно приводить к модуляции размера зоны проводимости и ПФ, можно ожидать, что именно вдоль открытых траекторий на ПФ будут происходить наиболее заметные изменения электронной плотности. Однако в настоящее время теория подобного эффекта отсутствует, что затрудняет количественное описание механизма возникновения анизотропии МС в металлах с динамическими страйпами.

4. Заключение. Проведенные исследования удельного сопротивления семейства магнитных и немагнитных РЗ додекаборидов RB₁₂ установили понижение симметрии электронного транспорта при низких и промежуточных температурах, которое не может быть связано исключительно с топологией ПФ в этих металлах со структурной (эффект Яна–Теллера) и электронной (зарядовые страйпы вдоль [110]) неустойчивостью. Предложено объяснение анизотропии МС в терминах взаимодействия динамических зарядовых страйпов с сильным магнитным полем. В то же время, полученные в работе результаты моделирования ПФ LuB₁₂ и выполненный анализ открытых и замкнутых траекторий на П Φ , позволяет предположить, что взаимосвязь между флуктуациями электронной плотности и топологией П Φ является фактором, определяющим широкий температурный диапазон и значительную амплитуду наблюдаемой анизотропии.

Работа выполнена при поддержке грантов Российского научного фонда (#17-12-01426) и Российского фонда фундаментальных исследований (#18-02-01152).

Авторы признательны В.Н.Краснорусскому за помощь в эксперименте и полезные обсуждения.

- 1. E. Dagotto, Science **309**, 257 (2005).
- B. Keimer, S.A. Kivelson, M.R. Norman, S. Uchida, and J. Zaanen, Nature 518, 179 (2015).
- S. Sachdev and B. Keimer, Phys. Today 64(2), 29 (2011).
- S.V. Demishev, V.N. Krasnorussky, A.V. Bogach, V.V. Voronov, N.Y. Shitsevalova, V.B. Filipov, V.V. Glushkov, and N.E. Sluchanko, Sci. Rep. 7(1), 1 (2017).
- K. Flachbart, P. Alekseev, G. Grechnev, N. Shitsevalova, K. Siemensmeyer, N. Sluchanko, and O. Zogal, *Rare* earth dodecaborides-magnetism, superconductivity and other properties, Nova Science Publishers, N.Y. (2008).
- N. Sluchanko, A. Bogach, N. Bolotina, V. Glushkov, S. Demishev, A. Dudka, V. Krasnorussky, O. Khrykina, K. Krasikov, V. Mironov, V.B. Filipov, and N. Shitsevalova, Phys. Rev. B 97(3), 1 (2018).
- N.B. Bolotina, A.P. Dudka, O.N. Khrykina, V.N. Krasnorussky, N.Y. Shitsevalova, V.B. Filipov, and N.E. Sluchanko, J. Phys. Condens. Matter **30**(26), 265402 (2018).
- N.B. Bolotina, A.P. Dudka, O.N. Khrykina, V.V. Glushkov, A.N. Azarevich, V.N. Krasnorussky, S. Gabani, N.Y. Shitsevalova, A.V. Dukhnenko, V.B. Filipov, and N.E. Sluchanko, J. Phys. Chem. Solids **129**, 434 (2019).
- N. Sluchanko, A. Khoroshilov, V. Krasnorussky, and K. Krasikov, Acta Phys. Pol. A 137(5), 756 (2020).
- A. L. Khoroshilov, V. N. Krasnorussky, K. M. Krasikov, A. V. Bogach, V. V. Glushkov, S. V. Demishev, N. A. Samarin, V. V. Voronov, N. Y. Shitsevalova, V. B. Filipov, S. Gabani, K. Flachbart, K. Siemensmeyer, S. Y. Gavrilkin, and N. E. Sluchanko, Phys. Rev. B 99(17), 1 (2019).
- K. M. Krasikov, A. V. Bogach, A. D. Bozhko, V. V. Glushkov, S. V. Demishev, A. L. Khoroshilov, N. Y. Shitsevalova, V. Filipov, S. Gabáni, K. Flachbart, and N. E. Sluchanko, Solid State Sciences **104**, 106253 (2020).
- A. Azarevich, A. Bogach, S. Demishev, V. Glushkov, and N. Shitsevalova, Acta Phys. Pol. A 137(5), 788 (2020).

- A. P. Dudka, O. N. Khrykina, N. B. Bolotina, and N. Y. Shitsevalova, Crystallography Reports 64(5), 737 (2019).
- I.M. Lifshitz and V.G. Peschansky, Sov. Phys. JETP 8(5), 875 (1959).
- I. M. Lifshitz and V. G. Peschansky, Sov. Phys. JETP 11(1), 137 (1960).
- D. Shoenberg, Magnetic Oscillations in Metals, Cambridge University Press, Cambridge (2009).
- V.A. Gasparov, I. Sheikin, F. Levy, J. Teyssier, and G. Santi, Phys. Rev. Lett. **101**(9), 1 (2008).
- M. Heinecke, K. Winzer, J. Noffke, H. Kranefeld, H. Grieb, K. Flachbart, and Y. B. Paderno, Zeitschrift fur Phys. B Condens. Matter 98(2), 231 (1995).
- H. Liu, M. Hartstein, G. J. Wallace, A. J. Davies, M. C. Hatnean, M. D. Johannes, N. Shitsevalova, G. Balakrishnan, and S. E. Sebastian, J. Phys. Condens. Matter **30**(16), 1 (2018).
- 20. H. Werheit, V. Filipov, K. Shirai, H. Dekura,

N. Shitsevalova, U. Schwarz, and M. Armbrüster, J. Phys. Condens. Matter 23(6), 065403 (2011).

- S. Zhang, Q. Wu, Y. Liu, and O. V. Yazyev, Phys. Rev. B 99(3), 1 (2019).
- J. R. Klauder, W. A. Reed, G. F. Brennert, and J. E. Kunzler, Phys. Rev. 141(2), 592 (1966).
- N.E. Sluchanko, A.N. Azarevich, A.V. Bogach, I.I. Vlasov, V.V. Glushkov, S.V. Demishev, A.A. Maksimov, I.I. Tartakovskii, E.V. Filatov, K. Flachbart, S. Gabani, V.B. Filippov, N.Y. Shitsevalova, and V.V. Moshchalkov, JETP 113(3), 468 (2011).
- N.E. Sluchanko, A.L. Khoroshilov, A.V. Bogach, V.V. Voronov, V.V. Glushkov, S.V. Demishev, V.N. Krasnorussky, K.M. Krasikov, N.Y. Shitsevalova, and V.B. Filipov, JETP Lett. **107**(1), 30 (2018).
- N.E. Sluchanko, A.V. Bogach, V.V. Glushkov, S.V. Demishev, N.A. Samarin, D.N. Sluchanko, A.V. Dukhnenko, and A.V. Levchenko, JETP 108(4), 668 (2009).