Наблюдение фотоиндуцированной проводимости регулярной доменной структуры с наклонными стенками в MgO:LiNbO₃ на длине волны 632.8 нм при дифракции Брэгга

Е. Н. Савченков⁺¹⁾, А. В. Дубиков⁺, А. Е. Шараева⁺, Н. И. Буримов⁺, С. М. Шандаров^{+×}, А. А. Есин^{*}, А. Р. Ахматханов^{*}, В. Я. Шур^{*}

⁺ Томский государственный университет систем управления и радиоэлектроники, 634050 Томск, Россия

*Уральский федеральный университет, 620002 Екатеринбург, Россия

[×] Центр квантовых технологий, МГУ им. М.В. Ломоносова, 119991 Москва, Россия

Поступила в редакцию 19 августа 2020 г. После переработки 15 октября 2020 г. Принята к публикации 15 октября 2020 г.

Впервые наблюдалось индуцированное излучением с длиной волны 632.8 нм изменение проводимости регулярной доменной структуры (РДС), сформированной в кристалле 5% MgO:LiNbO₃. Оно проявлялось в увеличении скорости релаксации для эффективности дифракции Брэгга на РДС, наблюдаемой после приложения внешнего электрического поля, с ростом интенсивности зондирующего пучка. На начальном участке релаксации, связанной с экранировкой внешнего поля вследствие перераспределения зарядов по проводящим наклонным доменным стенкам РДС, эта зависимость является линейной. Для зондирующего пучка с интенсивностью 49 мВт/мм² индуцированная эффективная проводимость РДС, которая оценена как $\sigma_{\rm eff} = 3.5 \cdot 10^{-9} \, {\rm Om^{-1} \, m^{-1}}$, более чем на четыре порядка превосходит темновую проводимость монодоменного образца MgO:LiNbO₃.

DOI: 10.31857/S1234567820220036

Регулярные доменные структуры (РДС) в кристаллах ниобата лития (LN) являются в настоящее время основой для одного из подходов к развитию нелинейно-оптических методов преобразования спектральных характеристик лазерного излучения [1–6] и электрооптического управления его параметрами [1, 5–8]. РДС в кристаллах LN, создаваемые методами доменной инженерии [1,9–11], могут иметь доменные стенки с наклоном относительно полярной оси, достигающим 0.2° и более [11-15]. Такие наклонные стенки в сегнетоэлектриках, являющиеся заряженными, благодаря своим уникальным свойствам рассматриваются как перспективные функциональные элементы для реализации реконфигурируемых систем наноэлектроники, квантовой и волноводной фотоники и гибридной оптоэлектроники [9, 11, 14].

Наиболее привлекательным свойством заряженных доменных стенок является двумерная проводимость металлического типа, на порядки превосходящая ее величину для монодоменного кристалла [11–14, 16, 17]. Проводимость заряженных стенок для отдельных доменов изучалась методами атомносиловой микроскопии (ACM) [9,11-14,17] и наноимпедансной спектроскопии [12]. При этом в образцах MgO:LiNbO₃ с изолированными доменами шестиугольной формы сигнал проводимости АСМ наблюдался только при подсветке одной из граней кристалла ультрафиолетовым излучением с энергией кванта, превосходящей ширину его запрещенной зоны [13]. Эти домены имели положительно заряженные доменные стенки и формировались с использованием жидких электродов, а ток АСМ имел порядок единиц пА. Использование для переключения поляризации MgO:LiNbO₃ электродов типа металл/металл [14] или комбинации металл/жидкость, в которой электрод с металлическим типом проводимости контактировал с Z-полярной гранью [15], позволило создавать отдельные домены и доменные структуры с положительно заряженными стенками, обладающими стабильной во времени большой проводимостью и в темновых условиях. Например, приложение напряжения $U = 100 \,\mathrm{B}$ к структуре, содержащей решетку из 732 областей с длиной 1 мм, переполяризованных методом каллиграфической записи доменов [18] с помощью ACM с иглой из карбида вольфрама, вызы-

¹⁾email: rossler@mail.ru

вало протекание значительного тока, достигающего около 8 мА [14].

Для РДС с углом наклона доменных стенок к полярной оси кристалла 5 % MgO:LiNbO₃ $\alpha = 0.31^{\circ}$ и пространственным периодом $\Lambda = 8.79$ мкм величина эффективной проводимости была оценена в [19] по кинетике релаксации эффективности дифракции Брэгга, наблюдаемой после приложения постоянного электрического поля, как $\sigma_{\text{eff}} = 5.96 \cdot 10^{-11} \,\text{Om}^{-1} \,\text{m}^{-1}$. При этом использовался зондирующий лазерный пучок с неизменной интенсивностью и длиной волны $\lambda = 655$ нм, энергия квантов которого была существенно меньшей, чем ширина запрещенной зоны кристалла. Возможность оптического управления проводимостью РДС с наклонными доменными стенками в кристаллах ниобата лития излучением с энергией квантов, не превосходящей ширину запрещенной зоны, ранее не изучалась.

В настоящей работе представлены первые результаты по экспериментальному наблюдению зависимости проводимости РДС с наклонными стенками в кристалле 5 % MgO:LiNbO₃ от интенсивности индуцирующего ее зондирующего лазерного пучка с длиной волны 632.8 нм.

Исследуемая РДС с приведенными выше параметрами из [19], показанная на рис. 1, была

Рис. 1. (Цветной онлайн) Схема экспериментальной установки: 1 – Не-Ne лазер; 2 – сменный светофильтр; 3 – положительная сферическая линза; 4 и 5 – медные электроды; 6 – кристалл LN с РДС; 7 – ріп-фотодиод; 8 – осциллограф

сформирована методом переключения поляризации под действием внешнего пространственнопериодического электрического поля [10] в образце с размерами $40 \times 2 \times 1 \text{ мм}^3$ вдоль осей X, Y и Z,

Письма в ЖЭТФ том 112 вып. 9-10 2020

соответственно. Для приложения внешнего электрического поля к РДС использовались плоские медные электроды, механически прижимаемые к Z-граням кристалла.

В экспериментах использовалось излучение Не-Ne лазера с длиной волны $\lambda = 632.8$ нм и выходной мощностью 22 мВт, ослабляемое до необходимой величины набором светофильтров. Пучок лазера имел гауссову форму с радиусом $r_0 = 0.35$ мм и фокусировался примерно на середину входной грани y = 0образца с РДС сферической линзой с фокусным расстоянием F = 350 мм. Максимальная входная интенсивность зондирующего пучка І₀ изменялась от 1.4 до 49.0 мВт/мм² при радиусе $r_f = 0.2$ мм. Точная настройка образца по углу Брэгга и по вертикальному положению перетяжки пучка осуществлялась в отсутствие приложенного напряжения с помощью pin-фотодиода BPW34, по максимуму мощности в первом дифракционном порядке. Эффективность дифракции Брэгга на доменных стенках имела значение $\eta_{dw} = 0.012$.

Подключение к электродам постоянного напряжения от стабилизированного источника питания осуществлялось тумблером через резистор с номиналом R = 1 кОм. При этом происходило увеличение мощности дифрагированного пучка, регистрируемое цифровым осциллографом TBS 1152 на начальном участке, как ступенчатый импульс с длительностью фронта ~ 25 нс. За это время дифракционная эффективность достигала максимального значения, зависящего от приложенного напряжения, а затем наблюдалась ее сравнительно медленная релаксация к исходной величине η_{dw} . Максимальное значение достигаемой дифракционной эффективности $\eta_m \approx 0.13$ не зависело от интенсивности зондирующего пучка I₀ и наблюдалось для приложенного к РДС напряжения $U_0 = \pm 500 \,\mathrm{B}$. Время наблюдения процесса релаксации с помощью цифрового осциллографа TBS 1152 варьировалось в зависимости от I₀ и определялось скоростью развертки, составляющей от 0.025 до 1 с на деление.

Типичные осциллограммы кинетики нормированной дифракционной эффективности $\eta_{\mp}(t)/\eta_m$ на интервале продолжительностью 2 с для значений приложенного напряжения $U_0 = -500$ и +500 В представлены на рис. 2а и b соответственно. Видно, что динамика релаксации при положительном и отрицательном напряжениях слегка отличается, а ее скорость растет с интенсивностью зондирующего пучка.

Из представленной на рис. 3 осциллограммы для увеличенной длительности развертки видно, что величина дифракционной эффективности $\eta_+(t)$ воз-

Рис. 2. (Цветной онлайн) Динамика эффективности дифракции Брэгга на РДС в первый порядок, наблюдаемая после приложения внешнего постоянного напряжения $U_0 = -500$ B (a) и $U_0 = +500$ B (b) для зондирующего гауссова пучка с интенсивностью в максимуме $I_0 = 1.4$ (1), 6.5 (2), 16.0 (3) и 49.0 (4) мВт/мм²

Рис. 3. (Цветной онлайн) Зависимость дифракционной эффективности в первом порядке при включении приложенного к РДС напряжения $U_0 = +500$ В при $t_{\rm on} = 0$ с и его выключении при $t_{\rm off} = 5.916$ с. Для $t < t_{\rm on}$ и t > 11 с наблюдается дифракция с эффективностью $\eta_{dw} = 0.012$ на доменных стенках

вращается к исходному значению $\eta_{dw} = 0.012$, характерному для дифракции на доменных стенках. Для максимальной интенсивности $I_0 = 3.3 \,\mathrm{MBt}/\mathrm{Mm}^2$ это происходит за время, составляющее около 5 с. Такое поведение $\eta_+(t)$ свидетельствует о наличии эффекта релаксации именно для возмущений необыкновенного показателя преломления, создаваемых в РДС приложенным электрическим полем.

Характерно, что последующее за релаксацией выключение приложенного внешнего поля при $t\,=\,$

= 5.916 с приводит к быстрому увеличению эффективности дифракции Брэгга до значения, близкого к $\eta_m \approx 0.13$. Используемые в данном эксперименте длительность развертки 1 с на деление и интервал дискретизации осциллограммы $\Delta t = 4$ мс не позволили сделать более точную оценку времени нарастания дифракционной эффективности, чем $\tau_f < \Delta t$.

Для описания процесса релаксации в условиях экспериментально наблюдаемой дифракции Брэгга с достаточно слабой эффективностью воспользуемся приближенной формулой, следующей из известных соотношений [8,20]

$$\eta(t) \approx \left(\frac{\pi d}{\lambda \cos \theta_B}\right)^2 |\Delta \dot{n}_m^e(t)|^2, \tag{1}$$

где d – длина взаимодействия и θ_B – угол Брэгга. Комплексную амплитуду возмущений показателя преломления необыкновенной волны $\Delta \dot{n}_m^e(t)$ в РДС будем полагать обусловленной однородным электрическим полем E(t) различной полярности и доменными стенками, с некоторым фазовым сдвигом φ между данными составляющими [21]:

$$\Delta \dot{n}_m^e(t) = \pm \Delta n_{eo}(t) + \Delta n_{dw} \exp(i\varphi).$$
 (2)

С использованием соотношений, приведенных в [8,21], и в пренебрежении слабым упругооптическим вкладом, эти возмущения могут быть записаны в следующем виде:

$$\Delta n_{eo}(t) = -\frac{1}{2} n_e^3 r_{33} \frac{F_{eo}}{\delta} |E(t)|, \qquad (3)$$

Письма в ЖЭТФ том 112 вып. 9-10 2020

$$\Delta n_{dw} = \frac{1}{2} n_e^3 R_{33} P_S^2 F_{dw}.$$
 (4)

Здесь n_e – необыкновенный показатель преломления, а r_{33} и R_{33} – электрооптические коэффициенты линейного и квадратичного эффектов кристалла; P_S – модуль вектора спонтанной поляризации; F_{eo} и F_{dw} – модули амплитуд Фурье для первых пространственных гармоник, создаваемых в РДС внешним электрическим полем единичной напряженности (eo) и доменными стенками (dw). Параметр $\delta = 1 + \varepsilon_3^r h_a/h$, где ε_3^r – относительная статическая диэлектрическая проницаемость кристалла, учитывает уменьшение электрического поля в кристалле с толщиной hпри наличии некоторого воздушного зазора с эффективной толщиной h_a между его Z-поверхностями и металлическими электродами.

Как следует из соотношений (1)–(4), наблюдаемое экспериментально сравнительно медленное уменьшение дифракционной эффективности (рис. 2 и 3) можно связать с релаксацией напряженности электрического поля в области РДС, освещаемой зондирующим пучком. При этом временная зависимость электрического поля в кристалле может быть получена непосредственно из экспериментальных данных для дифракционной эффективности:

$$E(t) = \frac{2\delta\lambda\cos\theta_B}{n_e^3 r_{33} F_{eo}\pi d} \sqrt{\frac{\eta_-(t) + \eta_+(t)}{2} - \eta_{dw}}.$$
 (5)

Использование соотношения (5), значения $\eta_{dw} = 0.012$ и экспериментальных данных для $\eta_{-}(t)$ и $\eta_{+}(t)$, частично представленных на рис. 2, позволило провести расчет динамики релаксации электрического поля в исследуемой РДС с проводящими стенками, результаты которого показаны точками на рис. 4.

Анализ полученных нормированных временных зависимостей показал, что кинетика релаксации электрического поля в кристалле может быть удовлетворительно описана следующей функцией:

$$E(t, I_0) = E_m \exp\{-a_E(I_0) \ln[1 + b_E(I_0)t]\}, \qquad (6)$$

с параметрами a_E и b_E , зависящими от максимальной интенсивности I_0 зондирующего гауссова пучка. На рисунке 4 такие аппроксимирующие функции показаны сплошными кривыми.

Характерно, что на начальном участке релаксации, при $b_E t \ll 1$, она имеет чисто экспоненциальный (максвелловский) характер со скоростью $\gamma_0(I_0) =$ $= a_E(I_0)b_E(I_0)$. Использование параметров аппроксимации a_E и b_E , полученных при подгонке кривых (6) под представленные на рис. 4 результаты расчета зависимостей $E(t)/E_m$ из экспериментальных дан-

Письма в ЖЭТФ том 112 вып. 9-10 2020

Рис. 4. (Цветной онлайн) Динамика релаксации электрического поля в РДС, рассчитанная по формуле (5) из экспериментальных данных, иллюстрируемых рис. 2 (точки), и ее аппроксимация функцией (6) (сплошные кривые)

ных, позволило найти скорости релаксации электрического поля на начальном участке γ_0 . Эти скорости для четырех значений интенсивности зондирующего пучка показаны точками на рис. 5. Представленная

Рис. 5. (Цветной онлайн) Зависимость скорости релаксации электрического поля в РДС на начальном участке от интенсивности гауссова зондирующего пучка в максимуме. Точки – расчет из экспериментальных данных, прямая – линейная зависимость с коэффициентом $\beta_E = 0.29 \cdot 10^{-3} \, \text{м}^2/\text{Дж}$

здесь же аппроксимирующая линейная зависимость $\gamma_0(I_0) = \beta_E I_0$ получена для $\beta_E = 0.29 \cdot 10^{-3} \,\mathrm{m}^2/\mathrm{Дж}$. Отклонения экспериментальных точек от данной ли-

нейной зависимости можно объяснить погрешностями при измерении дифракционных эффективностей $\eta_{-}(t)$ и $\eta_{+}(t)$ и при подгонке аппроксимирующих функций (6) под результаты расчета по формуле (5).

Рассматриваемая релаксация напряженности суммарного электрического поля в кристалле E(t)может быть связана с контактными явлениями и с экранировкой внешнего поля $E_{\rm ext} \sim U_0/h$, обусловленной перераспределением объемного заряда по РДС. Однако для используемых в экспериментах механически прижимаемых к кристаллу с РДС медных электродов инжекционные токи должны отсутствовать. Кроме того, интенсивность зондирующего гауссова пучка на Z-гранях кристалла не превышает $10^{-5}I_0$, что позволяет не учитывать ее влияние на контактные процессы. Другой причиной формирования электрического поля $E_{int}(t)$ в РДС, компенсирующего поле E_{ext} в области распространения зондирующего пучка, может быть перераспределение зарядов за счет дрейфового и фотовольтаического механизмов в объеме периодически инвертированных доменов [22, 23]. Как известно [24], формирование поля $E_{int}(t)$ в этом случае происходит со скоростью $\gamma_{\rm ph} = 1/\tau_{di} = \sigma_{\rm ph}/\varepsilon_{33}$, определяемой временем максвелловской релаксации au_{di} , где $\sigma_{\rm ph}$ – фотопроводимость и ε_{33} – статическая диэлектрическая проницаемость кристалла. Из результатов измерения фотопроводимости кристалла 4.61% MgO:LiNbO₃ на длине волны $\lambda = 632.8$ нм [25] и значения $\varepsilon_{33} = 2.48 \cdot 10^{-10} \, \Phi/M$ [1], для используемого в экспериментах зондирующего пучка с максимальной интенсивностью $I_0 = 49 \text{ MBt}/\text{Mm}^2$, эту скорость можно оценить как $\gamma_{\rm ph} \sim 10^{-3} \, {\rm c}^{-1}$. Сравнение с приведенными на рис. 5 данными показывает, что наблюдаемая скорость формирования компенсирующего поля на четыре порядка превосходит данную оценку, относящуюся к перераспределению заряда в объеме доменов РДС.

Наблюдаемая экспериментально скорость релаксации может быть объяснена при учете особенностей электронных свойств наклонных доменных стенок РДС. Перераспределение зарядов в области наклонных стенок во внешнем поле обуславливает его экранировку. Перераспределение может быть обусловлено как движением свободных носителей, так и образованием и переориентацией существующих дипольных дефектов. Не затрагивая микроскопических причин, оценим необходимую эффективную проводимость кристалла с наклонными РДС.

В предположении максвелловского характера релаксации суммарного электрического поля $E_{\Sigma}(z,t) = E_{\text{ext}} - E_{\text{int}}(z,t)$ на начальном участке,

усредненная по периоду Λ эффективная проводимость исследуемого кристалла LN с РДС может быть найдена как $\sigma_{\rm eff}(I_0) = \varepsilon_{33}\gamma_0(I_0)$. Из рисунка 3 следует, что при $t \gg 1/\gamma_0$ компенсирующее поле $E_{\rm int}$ становится равным приложенному $E_{\rm ext}$. При выключении последнего в момент времени $t_{\rm off}$ именно поле $E_{\rm int}$ и определяет быстрое возрастание дифракционной эффективности до значения $\eta(t_{\rm off}) \approx \eta_m$, наблюдавшегося ранее в момент включения внешнего поля.

Характерно, что эффективная проводимость исследуемого кристалла LN с РДС связана с интенсивностью зондирующего гауссова пучка с λ = = 632.8 нм линейной зависимостью, $\sigma_{\rm eff}(I_0) = B_{\rm ph}I_0$, где $B_{\rm ph} = \varepsilon_{33}\beta_E$. Используя полученную выше оценку для β_E , находим значение параметра $B_{\rm ph} = 7.2 \times$ $\times 10^{-14} \,\mathrm{Om^{-1}\,Bt^{-1}}$ м. Для зондирующего пучка с максимальной используемой в экспериментах интенсивностью $I_0 = 49 \,\mathrm{MBt}/\mathrm{Mm}^2$ достигаемая эффективная проводимость может быть оценена как $\sigma_{\rm eff}$ = $= 3.5 \cdot 10^{-9} \,\mathrm{Om^{-1} \, m^{-1}}$. Эта величина более чем на четыре порядка превосходит значение темновой проводимости $\sigma_d < 1.9 \cdot 10^{-13} \, \mathrm{Om}^{-1} \, \mathrm{m}^{-1}$ для монодоменного образца MgO:LiNbO₃, приведенное в [26]. Наблюдаемая проводимость РДС имеет фотоиндуцированный характер, линейно возрастая с интенсивностью зондирующего пучка.

Таким образом, при дифракции Брэгга на РДС с доменными стенками, наклоненными к полярной оси кристалла 5 % MgO:LiNbO₃ на угол $\alpha = \pm 0.31^{\circ}$, приложение внешнего постоянного электрического поля вначале приводит к быстрому увеличению эффективности, а затем к медленной ее релаксации, скорость которой растет с интенсивностью зондирующего пучка с $\lambda = 632.8$ нм. Эти особенности процесса релаксации можно связать с экранировкой приложенного внешнего электрического поля вследствие фотоиндуцированного изменения проводимости наклонных доменных стенок РДС излучением света с энергией квантов, существенно меньшей, чем ширина запрещенной зоны LN в монодоменном состоянии.

Авторы благодарны С.В.Смирнову и А.И.Бруневу за помощь в проведении экспериментов и полезные консультации.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках Госзадания на 2020–2022 годы (задание FEWM-2020-0038/3).

P. Ferrari, S. Grilli, P. DeNatale (editors), *Ferroelectric Crystals for Photonic Applications*, Springer-Verlag, Berlin-Heidelberg (2014).

- А.В. Никандров, А.С. Чиркин, Письма в ЖЭТФ 76, 333 (2002).
- Г. Д. Лаптев, А. А. Новиков, А. С. Чиркин, Письма в ЖЭТФ 78, 45 (2003).
- А. Н. Тучак, Г. Н. Гольцман, Г. Х. Китаева, А. Н. Пенин, С. В. Селиверстов, М. И. Финкель, А. В. Шепелев, П. В. Якунин, Письма в ЖЭТФ 96, 97 (2012).
- L.A. Rios, C.E. Minor, N.A. Barboza, and R.S. Cudney, Opt. Express 26, 17591 (2018).
- T. Ding, Y. Zheng, and X. Chen, Opt. Lett. 44, 1524 (2019).
- 7. M. Yamada, Rev. Sci. Instrum. 71, 4010 (2000).
- I. Mhaouech, V. Coda, G. Montemezzani, M. Chauvet, and L. Guilbert, Opt. Lett. 41, 4174 (2016).
- G. Catalan, J. Seidel, R. Ramesh, and J. F. Scott, Rev. Mod. Phys. 84, 119 (2012).
- V. Ya. Shur, A. R. Akhmatkhanov, and I.S. Baturin, Appl. Phys. Rev. 2, 040604 (2015).
- P.S. Bednyakov, B.I. Sturman, T. Sluka, A.K. Tagantsev, and P.V. Yudin, NPJ Computational Materials 4, 65 (2018).
- M. Schröder, X. Chen, A. Haußmann, A. Thiessen, J. Poppe, D.A. Bonnell, and L.M. Eng, Materials Research Express 1, 035012 (2014).
- M. Schröder, A. Haußmann, A. Thiessen, E. Soergel, T. Woike, and L. M. Eng, Adv. Funct. Mater. 22, 3936 (2012).
- C. S. Werner, S. J. Herr, K. Buse, B. Sturman, E. Soegel, C. Razzaghi, and I. Breunig, Sci. Rep. 7, 9862 (2017).

- A. A. Esin, A. R. Akhmatkhanov, and V. Ya. Shur, Appl. Phys. Lett. **114**, 092901 (2019).
- V. Ya. Shur, I. S. Baturin, A. R. Akhmatkhanov, D. S. Chezganov, and A. A. Esin, Appl. Phys. Lett. 103, 102905 (2013).
- T. R. Volk, R. V. Gainutdinov, and H. H. Zhang, Appl. Phys. Lett. **110**, 132905 (2017).
- M. Mohageg, D.V. Strekalov, A.A. Savchenkov, A.B. Matsko, V.S. Ilchenko, and L. Maleki, Opt. Express 13, 3408 (2005).
- Е.Н. Савченков, С.М. Шандаров, С.В. Смирнов, А.А. Есин, А.Р. Ахматханов, В.Я. Шур, Письма в ЖЭТФ 110, 165 (2019).
- 20. H. Kogelnik, Bell Syst. Tech. J. 49, 2909 (1969).
- S. M. Shandarov, E. N. Savchenkov, M. V. Borodin, A. E. Mandel, A. R. Akhmatkhanov, and V. Ya. Shur, Ferroelectrics 542, 58 (2019).
- M. Taya, M. C. Bashaw, and M. M. Fejer, Opt. Lett. 21, 857 (1996).
- B. Sturman, M. Aguilar, F. Agulló-López, V. Pruneri, and P.G. Kazansky, J. Opt. Soc. Am. B 14, 2641 (1997).
- T. Volk and M. Wöhlecke, *Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching*, Springer-Verlag, Berlin/Heidelberg (2008).
- M. Aillerie, P. Bourson, M. Mostefa, F. Abdi, and M. D. Fontana, J. Phys: Conf. Ser. 416, 012002 (2013).
- M. C. Wengler, U. Heinemeyer, E. Soergel, and K. Buse, J. Appl. Phys. 98, 064104 (2005).