Магнитное состояние слоистых халькогенидов кобальта Co_7Se_8 и Co_7Te_8

 $(B.\ B.\ \Pi$ искунов $^{+1})$, $(B.\ B.\ O$ глобличев $^+$, $(A.\ \Phi.\ Cадыков<math>^+$, $(A.\ \Phi.\ A$ крамов $^{+*}$, $(A.\ \Gamma.\ C$ мольников $^+$, $(A.\ \Pi.\ \Gamma$ еращенко $^+$, $(A.\ B.\ Cелезнева<math>^*$, $(A.\ B.\ B.\ Баранов<math>^{+*}$

Поступила в редакцию 28 октября 2022 г. После переработки 20 ноября 2022 г. Принята к публикации 22 ноября 2022 г.

Впервые выполнено исследование структурных и магнитных свойств слоистого соединения Co_7Te_8 с помощью рентгеновской дифрактометрии, измерений магнитной восприимчивости и спектроскопии ядерного магнитного резонанса (ЯМР) на ядрах 59 Со. Также впервые проведено ЯМР-исследование селенида Co_7Se_8 , принадлежащего к тому же структурному типу (NiAs), что и Co_7Te_8 . В отличие от Co_7Se_8 в соединении Co_7Te_8 отсутствует упорядочение вакансий и атомов кобальта в катионных слоях, а кристаллическая структура Co_7Te_8 является более плоской и характеризуется существенно меньшим отношением параметров c_0/a_0 по сравнению с Co_7Se_8 (а и c_0 – параметры базовой элементарной ячейки NiAs). Определены значения компонент тензоров магнитного сдвига и градиента электрического поля в месте расположения ядер кобальта. Выявлена существенная локальная зарядовая и спиновая неоднородность соединений. Из температурных зависимостей сдвига и восприимчивости в Co_7Te_8 оценена константа сверхтонкого взаимодействия в ионах кобальта. Анизотропное увеличение межатомных расстояний не приводит к большей локализации 3d электронов и к появлению магнитных моментов на атомах кобальта в Co_7Te_8 . Это соединение остается паулиевским парамагнетиком вплоть до самых низких температур.

DOI: 10.31857/S1234567823010081, EDN: nvnucs

Исследованные в данной работе халькогениды кобальта Co_7Se_8 и Co_7Te_8 относятся к классу катиондефицитных слоистых соединений M_7X_8 , где M – это атомы 3d переходных металлов, а X – двухвалентные анионы VI группы таблицы Менделеева S, Se, Te. Для этих соединений характерно наличие вакансий в металлических слоях, а также образование разных сверхструктур в результате упорядочения вакансий и M атомов в слоях. Вакансии в соединениях M_7X_8 со структурой типа NiAs распределяются в каждом втором базисном слое атомов переходных металлов, что является основным принципом формирования этих сверхструктур (см. рис. 1). Хорошо известным представителем этого класса соединений является железосодержащий минерал – пирротин Fe_7S_8 [1, 2].

В M_7X_8 с ростом атомного номера 3d-элемента параметр c_0 (здесь и далее a_0 и c_0 – параметры базовой элементарной ячейки NiAs), характеризующий среднее межслоевое расстояние, слабо уменьшается в ряду V-Cr-Fe, однако при переходе от Fe₇X₈ к Co₇X₈ наблюдается резкое (около 10%) сжатие ре-

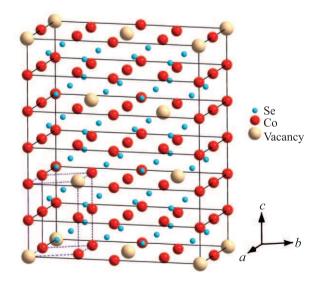


Рис. 1. (Цветной онлайн) Элементарная ячейка 3С сверхструктуры соединения Со₇Se₈. Пунктирными линиями показана базисная элементарная ячейка

шетки в направлении оси c [3]. Соединения Fe_7S_8 и Fe_7Se_8 являются ферримагнетиками с температура-

⁺ Институт физики металлов им. М. Н. Михеева Уральского отделения РАН, 620108 Екатеринбург, Россия

 $^{^*}$ Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, 620002 Екатеринбург, Россия

¹⁾e-mail: piskunov@imp.uran.ru

ми Кюри $T_C = 588-598 \,\mathrm{K} \, [2,4]$ и $T_C = 450-483 \,\mathrm{K}$ [5,6], соответственно. Что касается соединений Co_7S_8 и Со₇Se₈, исследование выявило слабую зависимость их магнитной восприимчивости от температуры, что позволило отнести эти халькогениды к парамагнетикам Паули [7-9]. Нестабильность магнитного момента атомов 3d металлов в слоистых халькогенидах выявлена также при приложении гидростатического давления. В частности, в соединениях FeS и Fe₇S₈ наблюдался коллапс магнитного момента атомов Fe при давлениях около 6.5 и 4.5 ГПа, соответственно [10, 11]. Природа такого поведения до конца не выяснена, однако различия в магнитном состоянии и в межслоевом расстоянии таких соединений позволяет сделать заключение о том, что существует связь между параметром решетки c_0 и типом магнетизма в этих соединениях. Следует отметить, что халькогениды кобальта рассматриваются в последние годы в качестве перспективных катализаторов, в частности, для электролиза воды [12]. Изучение причин зарядовой и спиновой нестабильности ионов кобальта в таких соединениях представляется чрезвычайно важным для более глубокого понимания механизмов каталитической активности таких соединений.

В этом отношении представляет интерес исследовать магнитное состояние теллурида кобальта Со₇Те₈. В нем, вследствие большего ионного радиуса Те в сравнении с радиусами S и Se, ожидается возрастание параметра c_0 и, возможно, появление магнитных моментов на атомах Со и магнитного упорядочения. До сих пор было выполнено лишь исследование халькогенидов кобальта с частичным замещением селена теллуром, а именно, $Co_7(Se_{1-x}Te_x)_8$ (x=0.2и 0.5) [9]. Данное исследование показало, что замещение селена теллуром приводит к возникновению кюри-вейсовского вклада в магнитную восприимчивость, что, по мнению автора, указывает на появление локализованных магнитных моментов на атомах кобальта. По его оценке величина эффективного момента, приходящегося на один атом Со, составляет $\mu_{\mathrm{eff}} = 0.077 \; \mu_{B} \; \mathrm{B} \; \mathrm{Co}_{7}(\mathrm{Se}_{0.8}\mathrm{Te}_{0.2})_{8} \; \mathrm{M} \; \mu_{\mathrm{eff}} = 0.106 \; \mu_{B} \; \mathrm{B}$ $Co_7(Se_{0.5}Te_{0.5})_8$. Логично ожидать, что в полностью замещенном составе Со₇Те₈ величина этих эффективных моментов возрастет.

В данной работе нами было впервые выполнено исследование структурных и магнитных свойств соединения $\mathrm{Co_7Te_8}$ посредством рентгенографии, измерения объемной магнитной восприимчивости и использования ядерного магнитного резонанса (ЯМР) ядер $^{59}\mathrm{Co.}$ Также впервые проведено ЯМР-исследование селенида $\mathrm{Co_7Se_8.}$ Выполнен

сравнительный анализ данных, полученных для этих двух соединений.

Поликристаллический образец Co_7Se_8 был получен методом твердофазного ампульного синтеза в вакуумированной кварцевой ампуле по одностадийной методике. Синтез Co_7Se_8 производился при $T=800\,^{\circ}\mathrm{C}$ с выдержкой при данной температуре в течение 5 дней. Поскольку согласно фазовой диаграмме Co-Te [13] при комнатной температуре стабильного соединения Co_7Te_8 не существует, то оно было получено в метастабильном состоянии из расплава закалкой от $T=1000\,^{\circ}\mathrm{C}$.

Рентгенографическая аттестация полученных образцов проводилась на дифрактометре Bruker D8 ADVANCE с $Cu K_{\alpha}$ излучением. На рисунке 2 пред-

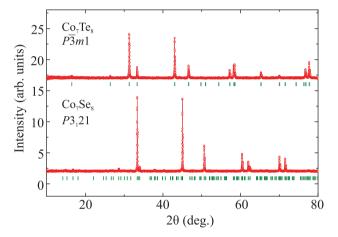
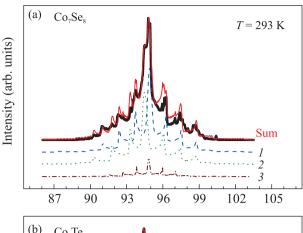



Рис. 2. (Цветной онлайн) Дифрактограммы соединений Co_7Te_8 (пр. группа $P\bar{3}m1$) и Co_7Se_8 (пр. группа $P3_121$)

ставлены дифрактограммы соединений Со₇Se₈ и Со₇Те₈ при комнатной температуре. Рентгеноструктурный анализ поликристаллических образцов показал, что соединения Со₇Se₈ и Со₇Te₈ имеют слоистую кристаллическую структуру типа NiAs. В пределах погрешности метода присутствие других фаз не выявлено. Для состава Со₇Se₈ характерно наличие упорядочения атомов кобальта и вакансий [14] с образованием сверхструктуры $2a_0 \times 3c_0$. Кристаллическая структура Со₇Se₈ описывается пространственной группой $P3_121$ с параметрами элементарной ячейки $a_0 = 3.604(7)$ Å и $c_0 = 5.275(2)$ Å. Приведенные к 1С структуре параметры Со₇Se₈ находятся в согласии с данными из работ [7, 15]. В отличие от Co₇Se₈ в соединении Co₇Te₈ атомы кобальта и вакансии среднестатистически распределены в катионных слоях без образования сверхструктур; структура теллурида Со₇Те₈ описывается пространственной группой $P\bar{3}m1$ и характеризуется параметрами элементарной ячейки $a_0 = 3.897(3)$ Å и $c_0 = 5.374(7)$ Å. Из-за большего ионного радиуса теллура объем элементарной ячейки $\mathrm{Co_7Te_8}$ ($V_0 = 70.616\,\mathrm{Å^3}$) значительно превышает значение $V_0 = 59.138\,\mathrm{Å^3}$, полученное для $\mathrm{Co_7Se_8}$. Важно отметить, что увеличение V_0 при переходе от $\mathrm{Co_7Se_8}$ к $\mathrm{Co_7Te_8}$ носит существенно анизотропный характер, о чем свидетельствует отношение параметров c_0/a_0 , которое для селенидного соединения составляет 1.464, тогда как для $\mathrm{Co_7Te_8}$ $c_0/a_0 = 1.379$. Такое уплощение структуры в теллуридном соединении, по-видимому, является следствием большей поляризуемости ионов теллура по сравнению с селеном и более высокой степенью ковалентности связей $\mathrm{Co-Te}$ по отношению к $\mathrm{Co-Se}$ связям.

Температурные зависимости магнитной восприимчивости образцов Со₇Se₈ и Со₇Te₈ измерялись на установке PPMS DynaCool (Quantum Design, USA), в температурном интервале 2-300 К в магнитных полях до 90 кЭ. ЯМР измерения были выполнены на импульсном спектрометре ЯМР в диапазоне температур $10 \le T \le 400\,\mathrm{K}$ во внешнем магнитном поле $H_0 = 92.8 \,\mathrm{k}$ Э. Сигнал спинового эха E(2t) формировался последовательностью двух когерентных радиочастотных импульсов $(\tau_p)_x - t_{\rm del} - (\tau_p)_y - t_{\rm del} - {\rm echo},$ создающих в резонансной катушке с образцом переменное магнитное поле с амплитудой $H_1 \approx 50-200\,\Im$. Для измерения спектров, ширина которых превышала полосу частот, возбуждаемую радиочастотным импульсом, применялась методика суммирования массива Фурье-спектров, полученных при изменении частоты спектрометра с шагом $\Delta \nu = 150\,\mathrm{k}\Gamma$ ц. Скорость ядерной спин-решеточной релаксации T_1^{-1} измерялась с использованием методики инвертирования и последующего восстановления ядерной намагниченности.

На рисунке 3 представлены спектры ЯМР ядер $^{59}{
m Co}$ в поликристаллических образцах ${
m Co_7Se_8}$ и ${
m Co_7Te_8},$ полученные при $T=293\,{
m K}$ во внешнем магнитном поле $H_0 = 92.8 \,\mathrm{k}$ Э. Ядро изотопа ⁵⁹Со обладает спином $^{59}I = 7/2$ и электрическим квадрупольным моментом $e^{59}Q = 0.42 \cdot 10^{-24} \,\mathrm{cm}^2$. В этом случае ЯМР-спектр представляет собой набор из 2I=7линий, одна из которых соответствует центральному переходу $(m=-1/2\leftrightarrow +1/2)$, а 6 других – сателлитным переходам $(m = \pm 3/2 \leftrightarrow \pm 1/2), (m =$ $=\pm 5/2 \leftrightarrow \pm 3/2$) и ($m=\pm 7/2 \leftrightarrow \pm 5/2$). В данной работе для расчета формы линий ЯМР использовалась специальная программа моделирования спектров "Simul" [16], численно рассчитывающая энергетические уровни и вероятности переходов на основе диагонализации матричных элементов гамильтониа-

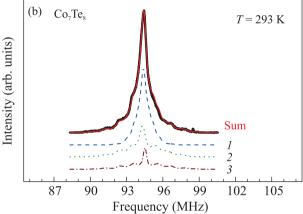


Рис. 3. (Цветной онлайн) Спектры ЯМР ядер 59 Со в поликристаллических образцах $\mathrm{Co_7Se_8}$ и $\mathrm{Co_7Te_8}$ в магнитном поле $H_0=92.8$ кЭ при температуре T=293 К и результат моделирования экспериментальных спектров набором из трех подспектров (1--3) с различными значениями компонент тензора магнитного сдвига и тензора Γ ЭП (представлены в табл. 1). Спектр Sum является суммой подспектров 1, 2, 3

на (квадрупольного и зеемановского) ядерной системы. Программа позволяет определять компоненты магнитного сдвига K_{α} ($\alpha=x,y,z$ – главные оси тензора градиента электрического поля (ГЭП)), а также значения квадрупольной частоты ν_Q и параметра асимметрии η . Величины ν_Q и η связаны с компонентами ГЭП V_{ii} следующим образом [17]:

$$\nu_Q = \frac{3eQV_{ZZ}}{4\pi I(2I-1)\hbar}, \quad \eta = \frac{V_{XX} - V_{YY}}{V_{ZZ}}.$$
(1)

Моделирование спектров ⁵⁹Со как в Со₇Se₈, так и в Со₇Te₈ показало, что полные экспериментальные спектры ЯМР могут быть описаны не менее чем тремя различными наборами резонансных линий, как это показано на рис. 3. Каждый такой подспектр, который мы в порядке убывания интенсивности обозначили цифрами 1, 2, 3, характеризуется собственным

Таблица 1. Магнитные сдвиги $K_{\rm iso}$ и квадрупольные частоты ν_Q для трех подспектров ЯМР ядер ⁵⁹Со в соединениях Co₇Se₈ и Co₇Te₈ при $T=293\,{\rm K}$

	$\mathrm{Co_{7}Se_{8}}$			$\mathrm{Co_{7}Te_{8}}$		
	1	2	3	1	2	3
$K_{\rm iso}, (\%)$	1.774	1.356	1.677	1.190	1.150	1.344
ν_Q , (М Γ ц)	2.61	2.85	2.17	0.88	2.14	2.28

набором параметров K_{α} , ν_{Q} и η . Невозможность описать экспериментальный спектр одним набором резонансных линий свидетельствует о наличии в Со₇Se₈ и Со₇Те₈ кристаллографически и магнитно- неэквивалентных позиций кобальта. Как упоминалось ранее, в системе Со₇Se₈ имеются вакансии кобальта в решетке. Кроме того, в работе [14] было показано, что в кристаллической решетке Со₇Se₈ имеются четыре различных позиции кобальта Со1-Со4. Они отличаются размерами октаэдров из атомов Se, окружающих Со. Наличие вакансий в кобальтовых слоях, а также их структурная неэквивалентность могут приводить к различию параметров K_{α} , ν_{Q} и η для отдельных групп ионов Со, что и проявляется в различии их спектров ЯМР. К сожалению, идентифицировать подспектры 1-3 по их интенсивностям без дополнительных исследований не представляется возможным, поскольку один и тот же набор параметров K_{α} , ν_Q и η могут иметь различные сочетания позиций кобальта Со1-Со4 с окружающими эти позиции вакансиями. Большее уширение ЯМР-спектра, наблюдаемое в Со₇Те₈, и размытие резонансных пиков по сравнению с таковыми в Со₇Se₈, по-видимому, обусловлено среднестатистическим распределением атомов кобальта и вакансий в слоях. Тем не менее, спектры ЯМР обоих образцов на рис. 3 однозначно свидетельствуют о существенной локальной неоднородности, как зарядовой, так и магнитной, соединений Co_7Se_8 и Co_7Te_8 .

Отметим некоторое несоответствие интенсивностей экспериментальных и теоретических линий ЯМР на отдельных участках полных спектров ⁵⁹Со, особенно в образце Со₇Se₈. Дело в том, что теоретический расчет формы и интенсивности линий ЯМР не учитывает некоторых экспериментальных деталей измерений спектров (например, зависимость добротности колебательного контура от резонансной частоты). Вследствие этого при измерениях спектров в широком диапазоне частот могут возникать достаточно значительные расхождения в интенсивностях экспериментальных и теоретических линий ЯМР. Однако выводы, сделанные в данной работе, основываются на данных о положении пиков в спектрах ЯМР, а не на их интенсивностях.

При анализе спектров ЯМР в поликристаллических образцах часто удобно перейти от компонент K_{α} к изотропной $K_{\text{iso}} = 1/3(K_x + K_y + K_z)$, аксиальной $K_{\rm ax} = 1/3(K_z - 1/2(K_x + K_y))$ и анизотропной $K_{\rm aniso} = 1/2(K_y - K_x)$ частям тензора магнитного сдвига линии ЯМР. В таблице 1 значения этих параметров, а также ν_Q и η при $T=293\,\mathrm{K}$ показаны для каждого подспектра 1-3 в соединениях Co₇Se₈ и Со₇Те₈. При анализе спектров было выяснено,что ν_{O} и η для каждого подспектра 1-3 в пределах погрешности не изменяется в температурном диапазоне $T = 10-400 \,\mathrm{K}$. Что касается K_{iso} , то его температурная эволюция идентична для каждого из подспектров. Поэтому на рис. 4а (чтобы не перегружать рисунок) представлены только данные $K_{iso}(T)$ для наиболее интенсивного спектра 1. Значения $K_{\rm iso}(T)$ для Со₇Se₈ и Со₇Te₈ отличаются в полтора раза по величине, но их температурные зависимости подобны.

Поведение магнитных восприимчивостей $\chi(T)$ соединений Co₇Se₈ и Co₇Te₈ (рис. 4b) различно. Для Со₇Se₈ наблюдается немонотонный характер зависимости $\chi(T)$ с широким максимумом вблизи T == 200 К. Кроме того при понижении температуры ниже 30 К происходит увеличение восприимчивости, что, возможно, связано с наличием локализированных магнитных моментов на некоторых атомах Со. Аппроксимация Т-зависимости восприимчивости выражением $\chi(T) = C/(T - T_c) + \text{const}$ (штриховая линия на рис. 4b) дает для $\mu_{\rm eff}$ значение $\sim 0.2 \,\mu_B$ на формульную единицу. В случае с Со₇Те₈ по данным измерений полевых зависимостей намагниченности обнаружено наличие небольшой ферромагнитной примеси, по-видимому, металлического Со. Оценка содержания этой примеси дала значение порядка ~ 2 %. Для определения магнитной восприимчивости соединения Со₇Те₈ были получены кривые намагничивания при разных температурах (см. вставку на рис. 4b), и из наклона высокополевой области зависимостей M(H) определены значения восприимчивости, что позволило исключить вклад примеси. Полученная после вычитания вклада от примеси $\chi(T)$ для образцов Co_7Te_8 не зависит от температуры при $T \ge 100 \, \mathrm{K}$ и немного уменьшается ниже 100 K.

Отметим, что в предыдущих исследованиях соединения Co_7Se_8 [7,9] наблюдался пик в температурной зависимости восприимчивости при $T=45\,\mathrm{K}$. Данная аномалия объяснялась либо наличием примеси антиферромагнетика Co_3O_4 [9], либо отражением магнитных свойств самого селенида [7]. Исчезновение этого пика в полученной нами T-зависимости восприимчивости свидетельствует об отсутствии в

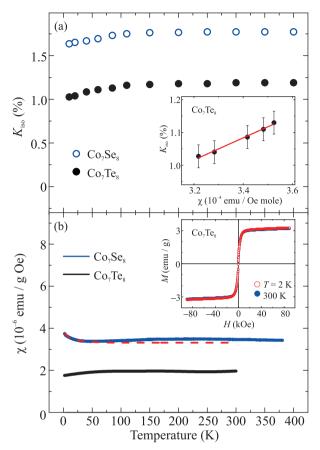


Рис. 4. (Цветной онлайн) (a) — Температурные зависимости магнитного сдвига ядер $^{59}\mathrm{Co}~K_\mathrm{iso}$ в порошковых $\mathrm{Co_7Se_8}$ и $\mathrm{Co_7Te_8}$; во вставке показана зависимость $K_\mathrm{iso}(\chi)$ в $\mathrm{Co_7Te_8}$ с температурой в качестве параметра, аппроксимированная прямой линией. (b) — Температурные зависимости магнитной восприимчивости $\chi(T)$ в $\mathrm{Co_7Se_8}$ и $\mathrm{Co_7Te_8}$. Штриховая линия — результат аппроксимация экспериментальных данных выражением $\chi(T) = C/(T-T_c) + \mathrm{const.}$ Во вставке — полевые зависимости намагниченности $\mathrm{Co_7Te_8}$, измеренные при 2 и 300 К

исследованном нами образце ${
m Co_7Se_8}$ каких-либо локальных магнитоупорядоченных примесей.

Из анализа спектров было выяснено, что для обоих соединений $\mathrm{Co_7Se_8}$ и $\mathrm{Co_7Te_8}$ K_ax и K_aniso равны нулю. В общем случае изотропный магнитный сдвиг линии ЯМР $K_\mathrm{iso}(T)$ можно записать в виде двух вкладов: независящего от температуры орбитального $K_\mathrm{orb,iso}$ и спинового $K_\mathrm{s,iso}$, связанных соответственно с орбитальными и спиновыми степенями свободы [18]:

$$K_{\rm iso}(T) = K_{s,\rm iso}(T) + K_{\rm orb,iso} = \frac{1}{\mu_B} H_{\rm hf} \chi_s(T) + K_{\rm orb,iso}.$$
(2)

Константа сверхтонкого взаимодействия (СТВ) $H_{
m hf}=(H_c+H_{cp}),$ где H_c и H_{cp} – изотропные кон-

станты контактного фермиевского взаимодействия и поляризации остова, соответственно. Контактный вклад в СТВ H_c обусловлен сверхтонким взаимодействием ядерного спина с валентными *s*-электронами. Он является положительным и существенен, как правило, в металлах. Слагаемое H_{cp} описывает СТВ, обусловленное поляризацией неспаренными *d*-электронами заполненных *s*-оболочек иона. Этот вклад изотропен и, за редкими исключениями, отрицателен [19]. Орбитальный вклад в сдвиг $K_{\text{orb.iso}}$ обусловлен ван-флековским парамагнетизмом валентных электронов иона, имеющих ненулевой орбитальный момент (т. е. p-, d-, и f-электронов). Он возникает вследствие частичного размораживания орбитального момента во внешнем магнитном поле, не зависит от температуры и является положительным.

В свою очередь однородная магнитная восприимчивость $\chi(T)$ также состоит из двух слагаемых: зависящей от температуры спиновой восприимчивости $\chi_s(T)$ и орбитальной восприимчивости $\chi_{\rm orb}$, которая в экспериментах, ведущихся при достаточно низких температурах $T \leq 400\,{\rm K}$, полагается T-независимой:

$$\chi(T) = \chi_s(T) + \chi_{\rm orb}.\tag{3}$$

Используя выражения (2) и (3), можно получить зависимость сдвига $K_{\rm iso}$ от χ с температурой в качестве параметра:

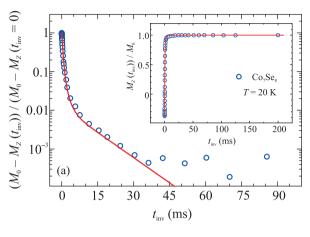
$$K_{\rm iso}(\chi) = H_{\rm hf}\chi + K_{\rm orb} - H_{\rm hf}\chi_{\rm orb},\tag{4}$$

которая имеет форму прямой линии с тангенсом угла наклона, равным $H_{\rm hf}$. Такая параметрическая зависимость $^{59}K_{\rm iso}(\chi)$ для ${\rm Co_7Te_8}$ представлена во вставке на рис. $4{\rm a.}$ Аппроксимируя данные параметрической зависимости $K_{\rm iso}(\chi)$ прямой (4), находим значение изотропной константы сверхтонкого электрон-ядерного взаимодействия в ионах кобальта $H_{\rm hf}=188(5)$ к $9/\mu_B$.

К сожалению, мы не можем определить подобным образом константу СТВ $H_{\rm hf}$ для ${\rm Co_7Se_8}$, поскольку сдвиг $K_{\rm iso}(T)$ в данном соединении во всем диапазоне температур не пропорционален магнитной воспри-имчивости $\chi(T)$. В зависимости $K_{\rm iso}(T)$ отсутствует максимум при $T\approx 200\,{\rm K}$, а ниже $T=30\,{\rm K}$ наблюдается уменьшение сдвига в отличие от роста $\chi(T)$.

В модели свободного электронного газа спиновая восприимчивость определяется плотностью состояний на уровне Ферми $\chi_{s,0}=2\mu_B^2N(E_F)$ и в простых паулиевских парамагнитных металлах, характеризующихся широкой s-зоной, не зависит от температуры. Что касается металлов, содержащих атомы пе-

реходных элементов, то в них спиновая восприимчивость может зависеть от температуры. Это является следствием узости d- или f-зоны таких металлов. В этом случае плотность состояний $N(E_F)$ может как уменьшаться, так и увеличиваться с понижением температуры [18]. Так же на величину и температурную зависимость спиновой восприимчивости могут влиять электрон-электронные взаимодействия. Учет таких взаимодействий приводит к следующему выражению для $\chi_s(T)$ [18, 19]:


$$\chi_s(T) = \frac{\chi_{s,0}}{1 - JN(E_F)} = 2\mu_B^2 \frac{N(E_F)}{1 - JN(E_F)}, \quad (5)$$

где J – эффективный потенциал электрон-электронного взаимодействия. В общем случае обе величины, входящие в правую часть выражения (5), могут зависеть от температуры. Тогда наличие широкого максимума в $\chi(T)$ при $T \approx 200 \,\mathrm{K}$ в $\mathrm{Co}_7\mathrm{Se}_8$ качественно можно объяснить следующим образом. С понижением температуры от 400 до 200 возрастает электрон-электронное взаимодействие (J), а $N(E_F)$ не изменяется, при этом знаменатель в (5) уменьшается, и $\chi(T)$ возрастает. Ниже $T=200\,\mathrm{K}$ начинается уменьшение числителя $(N(E_F))$ и рост знаменателя – $\chi(T)$ уменьшается. Отсутствие подобного максимума в халькогениде Со₇Те₈ может свидетельствовать о слабом или независящем от температуры электрон-электронном взаимодействии в этом соединении.

Как упоминалось выше, в соединении Со₇Se₈ мы не наблюдаем широкого максимума при $T\approx 200\,\mathrm{K}$ в зависимости $K_{iso}(T)$. Это может свидетельствовать об относительной малости спинового вклада K_s в полный сдвиг линии ЯМР. Касательно различия Т-зависимостей сдвига и восприимчивости в этом халькогениде ниже $T = 30 \, \mathrm{K}$ отметим, что магнитный сдвиг ЯМР пропорционален однородному вкладу в спиновую восприимчивость $\chi(q=0)$. Восприимчивость $\chi(T)$ может включать в себя и *неоднород*ные по образцу слагаемые. К ним относятся вклады от различного рода примесей, а также магнитных или немагнитных кластеров, распределенных внутри исследуемого образца. По-видимому, с такого рода неоднородностями мы имеем дело в образце Со₇Se₈. Они могут вносить вклад в ширину линии ЯМР, но не в ее сдвиг.

Результаты измерений скорости спин-решеточной релаксации (СРР) ядерной намагниченности $M_z=$ = $^{59}\gamma_n\hbar\langle I_z(t)\rangle$ ионов кобальта в соединениях Co₇Se₈ и Co₇Te₈ представлены на рис. 5. Времена спин-решеточной релаксации T_1 измеряли методом инвертирования и последующего восстановления ядерной

намагниченности. При измерении T_1 использовалась импульсная последовательность $2\tau_-t_{\rm inv}-(\tau_p)_x-t_{\rm del}-(\tau_p)_y-t_{\rm del}$ — echo.

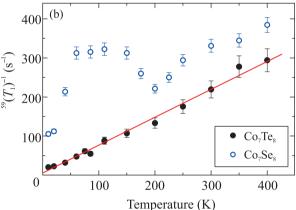


Рис. 5. (Цветной онлайн) (а) — Зависимость величин $(M_0-M_z(t_{\rm inv}))/(M_0-M_z(t_{\rm inv}=0))$ и $M_z(t_{\rm inv})/M_0$ (во вставке) от $t_{\rm inv}$ в соединении ${\rm Co_7Se_8}$ при $T=20\,{\rm K}$, сплошные линии — результат аппроксимации данных выражением (6). (b) — Температурные зависимости скорости ядерной спин-решеточной релаксации T_1^{-1} в соединениях ${\rm Co_7Se_8}$ и ${\rm Co_7Te_8}$. Прямая линия — аппроксимация данных прямой линией

Спин-решеточная релаксация макроскопической ядерной намагниченности $M_z(t)$ к термодинамически равновесному значению M_0 происходит за характерное время T_1 . В случае квадрупольно расщепленного спектра и инвертирования населенностей энергетических уровней, соответствующих квантовым числам m=+1/2 и m=-1/2 (центральный переход) кривая восстановления ядерной намагниченности для спина I=7/2 определяется следующим выражением [20]:

$$M_z(T) = M_0 - (M_0 - M_z(t=0)) \times [0.714e^{\frac{-28t}{T_1}} + 0.206e^{\frac{-15t}{T_1}} + 0.068e^{\frac{-6t}{T_1}} + 0.012e^{\frac{-t}{T_1}}].$$
 (6)

На рисунке 5а показан пример аппроксимации экспериментальной кривой намагниченности выражением (6).

В приближении свободного электронного газа в металлах величина T_1^{-1} растет пропорционально температуре. При этом выполняется так называемое соотношение Корринги [21]:

$$\left(\frac{1}{T_1}\right)_K = \left(\frac{\gamma_n}{\gamma_e}\right)^2 \frac{4\pi k_B}{\hbar} K_s^2 T, \tag{7}$$

где γ_e и γ_n – электронное и ядерное гиромагнитные отношения. Данное соотношение является следствием того, что релаксация и сдвиг в металле определяются, соответственно, флуктуирующей и статической частями локального поля $\chi_s H_{\rm hf}$, обусловленного сверхтонким взаимодействием $H_{
m hf}$ и связанного с плотностью состояний на уровне Ферми, $N(E_F) = \chi_s/2\mu_B^2$. Кроме того, в 3d-металлах может быть значительным так называемый орбитальный вклад в СРР $\left(\frac{1}{T_1}\right)_{\text{orb}}$, вызываемый флуктуациями орбитальных токов d-электронов. В отличие от орбитального вклада в магнитный сдвиг слагаемое $\left(\frac{1}{T_1}\right)_{\mathrm{orb}}$ никак не связано с орбитальной восприимчивостью $\chi_{\rm orb}$, и потому не может быть выражено через сдвиг K_{orb} . Этот вклад определяется непосредственно плотностью д-электронных состояний на уровне Ферми и, так же как $\left(\frac{1}{T_1}\right)_K$, пропорционален температуре [22]. Таким образом, в металлах, даже содержащих 3*d*-элементы, имеет место температурная зависимость скорости СРР корринговского типа, т. е. $1/T_1 \propto T$.

Рисунок 5 демонстрирует, что в Co_7Te_8 во всем диапазоне температур скорость $\text{CPP}^{59}\left(\frac{1}{T_1}\right)$ пропорциональна температуре, т.е. имеет коррингоподобный характер, что является дополнительным подтверждением того, что данное соединение - это паулиевский парамагнитный металл. Что касается состава Co₇Se₈, то в нем температурная зависимость $^{59}\left(\frac{1}{T_1}\right)$ показывает более сложную форму. В диапазоне температур $T = 200-400 \, \mathrm{K}$ скорость СРР является линейной функцией температуры, однако ниже 200 К наблюдается ее куполообразная Тзависимость с широким максимумом вблизи $T_{\rm max} =$ = 100 К. Наличие подобного максимума не характерно для обычных парамагнитных металлов и может служить указанием на наличие существенных электрон-электронных взаимодействий в исследуемом веществе. Действительно, рассмотренное выше выражение (7) для вклада в скорость СРР получено без учета электрон-электронных взаимодействий. Учет таких взаимодействий приводит к зависимости скорости СРР не от однородной восприимчивости $\chi(q=0)$, а от мнимой части обобщенной магнитной восприимчивости $\chi(q,\omega)$, которая, в свою очередь, является функцией температуры [23]. Увеличение скорости СРР вследствие электрон-электронных взаимодействий в металлах определяется следующим выражением [19]:

$$\frac{1}{T_1} = \frac{(T_1^{-1})_0}{\langle [1 - JN(E_F)F(q)]^2 \rangle}.$$
 (8)

Здесь $(T_1^{-1})_0$ — скорость релаксации без учета взаимодействия, F(q) — статическая диэлектрическая функция [18, 19], усреднение проводится по всем волновым векторам q. Мы полагаем, что именно усиление обменного электрон-электронного взаимодействия ниже $200\,\mathrm{K}$ является причиной нелинейной, с максимумом, T-зависимости скорости CPP в Co₇Se₈. Возникновение такой куполообразной зависимости $1/T_1$ от температуры качественно, так же как и пик в $\chi(T)$, может быть объяснено разными формами Tзависимости каждой из величин, входящих в выражение (8).

В заключение, впервые выполнено исследование структурных и магнитных свойств соединения Со₇Те₈ посредством рентгенографии, измерения магнитной восприимчивости и использования ядерного магнитного резонанса ядер ⁵⁹Со. Также впервые проведено ЯМР-исследование селенида Со₇Se₈. Анализ спектров ЯМР ⁵⁹Со позволил определить значения компонент тензоров магнитного сдвига и градиента электрического поля в месте расположения этих ядер, а также выявил существенную локальную неоднородность, как зарядовую, так и магнитную, соединений Со₇Se₈ и Со₇Te₈. Из температурных зависимостей сдвига и восприимчивости в Со₇Те₈ сделана оценка константы сверхтонкого взаимодействия в ионах кобальта. Выяснено, что в теллуридном соединении отсутствует упорядоченность вакансий и атомов кобальта в катионных слоях, а структура Со₇Те₈ является более плоской и характеризуется существенно меньшим значением отношения параметров c_0/a_0 , чем в Co_7Se_8 . Это различие, по-видимому, является следствием большей поляризуемости ионов теллура и более высокой степени ковалентности связей Со-Те по сравнению со связями Со-Se. В результате того, что увеличение межатомных расстояний при переходе от Со₇Se₈ к Со₇Te₈ происходит преимущественно в плоскости, это не привело к большей локализации 3d электронов и появлению магнитных моментов на атомах кобальта, как можно было ожидать. Соединение Со₇Те₈ оказалось даже ближе к классическим парамагнетикам Паули, чем Co_7Se_8 . Показано, что причиной немонотонного изменения с температурой магнитной восприимчивости и скорости спин-решеточной релаксации в соединении Co_7Se_8 могут являться сильные электрон-электронные корреляции.

Исследование выполнено за счет гранта Российского научного фонда (проект # 22-12-00220).

Работа выполнена с использованием оборудования ЦКП "Испытательный центр нанотехнологий и перспективных материалов" ИФМ УрО РАН.

- C.I. Pearce, R.A.D. Pattrick, and D.J. Vaughan, Rev. Mineral. Geochem. 61, 127 (2006).
- 2. H. Wang and I. Salveson, Phase Transitions **78**, 547 (2005).
- 3. T. Kamimura, J. de Physique 49, 191 (1988).
- A. V. Powell, P. Vaqueiro, K.S. Knight, L.C. Chapon, and R.D. Sánchez, Phys. Rev. B 70, 014415 (2004).
- M. Kawaminami and A. Okazaki, J. Phys. Soc. Jpn. 22, 924 (1967).
- 6. A. F. Andresen and J. Leciejewicz, J. Physique **25**, 574 (1964).
- V. L. Miller, W. L. Lee, G. Lawes, N.-P. Ong, and R. J. Cava, J. Solid State Chem. 178, 1508 (2005).
- N. V. Baranov, P. N. G. Ibrahim, N. V. Selezneva, A. F. Gubkin, A. S. Volegov, D. A. Shishkin, L. Keller, D. Sheptyakov, and E. A. Sherstobitova, J. Phys. Condens Matter 27, 286003 (2015).
- 9. П. Н. Г. Ибрахим, Дис. канд. физ.-мат. наук, Екатеринбург, Ур Φ У (2015).

- H. Kobayashi, M. Sato, T. Kamimura, H. Onodera, N. Kurodo, and Y. Yamaguchi, J. Physics: Condens. Matter 9, 515 (1997).
- W. G. Marshall, R. J. Nelmes, J. S. Loveday, S. Klotz, J. M. Besson, G. Hamel, and J. B. Parise, Phys. Rev. B 61, 11201 (2000).
- J. Wang, W. Cui, Q. Liu, Z. Xing, A.M. Asiri, and X. Sun, Adv. Mater. 28, 215 (2016).
- K. O. Klepp and K. L. Komarek, Monatsh. Chem. 104, 105 (1973).
- F. J. Garcia-Garcia, A. Larsson, L. Noren, and R. L. Withers, Solid State Sciences 6, 725 (2004).
- H. Ikeda, M. Shirai, N. Suzuki, and K. Motizuki,
 J. Magn. Magn. Mater. 140, 159 (1995).
- 16. Свидетельство о государственной регистрации программы для ЭВМ # 2018663091. Simul 2018. А. П. Геращенко, С. В. Верховский, А. Ф. Садыков, А. Г. Смольников, Ю. В. Пискунов, К. Н. Михалев, Зарегистрировано в Реестре программ для ЭВМ 22.10.2018 г.
- 17. А. Абрагам, *Ядерный магнетизм*, ИЛ, М. (1963), 551 с.
- 18. Ж. Винтер, *Магнитный резонанс в металлах*, Мир, М. (1976), 288 с.
- 19. Сверхтонкие взаимодействия в твердых телах: избранные лекции и обзоры, пер. с англ., Мир, М. (1970), 368 с.
- 20. A. Narath, Phys. Rev. **162**, 320 (1967).
- 21. J. Korringa, Physica 16, 601 (1950).
- 22. Y. Obata, J. Phys. Soc. Jpn. 18, 1020 (1963).
- 23. T. Moriya, J. Phys. Soc. Jpn. 18, 516 (1963).