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Several approaches to quantum gravity (including

Diakonov tetrads emerging as the bilinear combinations

of the fermionic fields [1]; BF -theories of gravity; the

model of superplastic vacuum; and effective acoustic

metric) suggest [2, 3] that in general relativity the met-

ric must have dimension 2, i.e. [gµν ] = 1/[L]2. In par-

ticular, the model of the superplastic vacuum [4] is de-

scribed in terms of the so-called elasticity tetrads [5–10]

Ea
µ = ∂Xa/∂xµ, where equations Xa(x) = 2πna are

equations of the (deformed) crystal planes. Since the

functions Xa play the role of the geometric U(1) phases

and thus are dimensionless, the elasticity tetrads play

the role of the gauge fields (translation gauge fields).

That is why tetrads have the same dimension 1 as the

dimension of gauge fields: [Ea
µ] = 1/[L].

Originally the dimension 1 tetrads appeared in the

Diakonov theory [1–13], where the tetrads emerge as bi-

linear combinations of the quantum fermionic fields:

Ea
µ =

1

2

(

Ψ†γa∂µΨ−Ψ†←−∂µγaΨ
)

. (1)

In this approach to quantum gravity the metric and the

space-time distance are both the quantum objects made

of the leptons and quarks [14]. Here we suggest that the

Diakonov theory leads to the unusual dimension of the

Planck constant ~.

Diakonov tetrads and elasticity tetrads give rise to

the covariant metric gµν = ηabE
a
µE

b
ν with dimension

2, [gµν ] = 1/[L]2, and the contravariant metric with di-

mension -2, [gµν ] = [L]2. The determinant of the tetrads

has dimension 4, [e] = [
√−g] = 1/[L]4, while the in-

terval is dimensionless, ds2 = gµνdx
µdxν , [s2] = [1].

Since the interval describes the classical dynamics of

a point particle with action S = M
∫

ds, the particle

mass M is dimensionless, [M ] = [1], as well as all other

diffeomorphism invariant quantities, such as action S,

1)e-mail: grigori.volovik@aalto.fi

interval s, cosmological constant Λ, scalar curvature R,

scalar field Φ, etc. [2, 3]. The variation of action leads

to the Hamilton–Jacobi equation gµν∂µS∂νS+M2 = 0,

where both terms are dimensionless. Since mass is di-

mensionless, GM2/r is dimensionless, which leads to

the length dimension of Newton constant, [G] = [L].

The wave vector kµ = ∂µS has dimension [kµ] = 1/[L]

and obeys equation gµνkµkν + M2 = 0. In the flat

Minkowski spacetime the wave vector obeys equation

|gMink
00 |−1(ω2 − k

2) = M2. This suggests that it is nat-

ural to identify the Planck constant ~ with the element

of Minkowski metric ~ = 1/
√

−gMink
00 [15]. Then the

red shift equation, Mm −Mn =
√

−g00 ωmn, becomes

the generalization of the conventional relation between

the energy levels and frequency of radiating photon in

Minkowski vacuum, Em − En = ~ωmn.

Note that as distinct from the dimensionless quan-

tities, which are diffeomorphism invariant, the parame-

ter ~ is not diffeomorphism invariant. It is determined

only in the Minkowski vacuum, and being the element of

the Minkowski metric it is invariant only under Lorentz

transformations. As a result the Planck constant ~ is

not dimensionless, and has the dimension of length [L].

Then according to Weinberg criterion [16] ~ cannot be

the fundamental constant (see also [17–20] on funda-

mental constants).

Another parameter of Minkowski spacetime is the

speed of light c, which enters the metric in the follow-

ing way: gµνMink = diag(~2, ~2c2, ~2c2, ~2c2). This param-

eter is invariant only under space rotation group SO(3),

and has dimension [L]/[t]. If the parameter c is taken

into account, the Planck constant has dimension of time

[~] = [M ][t] = [t]. Except for the special cases, we use

units with c = 1.

The parameter ~ enters only the Minkowski metric,

and does not enter any equation written in the covari-

ant form, i.e. in terms of the full metric. That is why in

general the commutation relations for position and mo-
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mentum operators in quantum mechanics do not contain

~, [k̂i, x̂
j ] = iδji . As a result, the elementary volume of

phase space
∫

dk dx and action are dimensionless, while

the parameter ~ of Minkowski vacuum has dimension of

time [t].

The quadratic terms in the action for the classical

scalar field Φ in the N -dimensional spacetime is:

S =

∫

dNx
√−g

(

gµν∇µΦ
∗∇νΦ+M2|Φ|2

)

. (2)

Due to zero dimensions of metric and mass the scalar

field is dimensionless, [Φ] = [1], which differs from

the dimension n = (N − 2)/2 of scalar fields in the

conventional approach. Expanding the Klein–Gordon

equation for scalar Φ over 1/M one obtains the non-

relativistic Schrödinger action. In Minkowski space-

time, introducing the Schrödinger wave function ψ:

Φ(r, t) = 1√
M

exp
(

iMt/
√

−g00
)

ψ(r, t), one obtains

the Schrödinger-type action

SSchr =

∫

d3xdt
√−gL, (3)

2L = i
√

−g00 (ψ∂tψ∗ − ψ∗∂tψ) +
gik

M
∇iψ

∗∇kψ. (4)

In Minkowski vacuum
√

−g00Mink ≡ ~, gikMink ≡ ~
2δik, one

obtains the conventional Schrödinger wave equation:

i~∂tψ = − ~
2

2M
∇2ψ. (5)

This is another consequence of the metric with dimen-

sion 1/[L]2: the quantum mechanical Schrödinger equa-

tion for nonrelativistic particle is obtained from the clas-

sical relativistic scalar field.

While temperature is dimensionless, [T ] = [M ] = [1],

the Tolman temperature TTolman = T (r)
√

−g00(r) has

dimension of inverse length, [TTolman] = 1/[L]. The pa-

rameter ~ determines the ratio between the temperature

and Tolman temperature in the Minkowski vacuum. In

principle there can be different Minkowski vacua, with

cosmological phase transitions between these vacua [21].

Then each vacuum may have its own value of the param-

eter ~. In the thermal contact between the two vacua

they must have the same Tolman temperature, and

thus their temperatures obey the rule, ~1/T1 = ~2/T2.

This means that in thermal equilibrium the contacting

Minkowski vacua have the same time τ on imaginary

axis, τ1 = τ2.

The Planck length scale has the conventional form

l2P = ~G, with [lP]
2 = [~][G] = [L][L] = [L]2. The Planck

constant has the same dimension as the Planck length,

[~] = [lP] = [L]. Whether this “Planck constant length”

is related to the “Planck length scale”, is an open ques-

tion [22]. Anyway, the Diakonov theory [1] suggests the

close connection between gravity and quantum mechan-

ics. The dimension 1/[L]2 of the metric suggests that

such metric describes the dynamics, quantum mechan-

ics and thermodynamics, rather than the geometry.
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