Мюоны в ШАЛ с $E_0 = 10^{19}$ эВ по данным Якутской установки

А.В. Глушков¹⁾, К.Г. Лебедев, А.В. Сабуров

Институт космофизических исследований и аэрономии Якутского научного центра им. Ю. Г. Шафера Сибирского отделения РАН, 677891 Якутск, Россия

> Поступила в редакцию 30 сентября 2022 г. После переработки 8 января 2023 г. Принята к публикации 13 января 2023 г.

Исследованы функции пространственного распределения частиц в широких атмосферных ливнях (ШАЛ) на Якутской установке наземными и подземными сцинтилляционными детекторами с порогом $E_{\mu} \approx 1.0 \times \sec \theta \, \Gamma$ эВ от космических лучей с энергией $E_0 \approx 10^{19}$ эВ за период непрерывных наблюдений 1986–2016 гг. Использованы данные с зенитными углами $\theta \leq 60^{\circ}$. Экспериментальные величины сравниваются с расчетными, выполненными по модели развития ШАЛ QGSJET-01-d из пакета программ CORSIKA. Вся совокупность рассмотренных данных указывает на вероятный состав космических лучей, близкий к протонному.

DOI: 10.31857/S123456782304002X, EDN: phpjuh

1. Введение. В последние годы возникла проблема избытка мюонов в некоторых экспериментах по сравнению моделями развития широких атмосферных ливней (ШАЛ) [1]. В решении ее участвуют многие коллаборации. Для сравнения разных данных используется параметр:

$$z = \ln(\rho_{\mu}^{\exp}/\rho_{\mu}^{p})/\ln(\rho_{\mu}^{Fe}/\rho_{\mu}^{p}), \qquad (1)$$

где $\rho_{\mu}^{\rm exp}$ – плотность мюонов, измеренная на эксперименте; ρ_{μ}^p и $\rho_{\mu}^{\rm Fe}$ – плотности мюонов, вычисленные в ливнях от первичных протонов (p) и ядер железа (Fe) для конкретных детекторов установок ШАЛ. Совместный анализ данных 8 групп исследователей (EAS-MSU, IceCube Neutrino Observatory, KASCADE-Grande, NEVOD-DECOR, Pierre Auger Observatory, SUGAR, Telescope Array and Yakutsk) показал, что модельные расчеты и измерения мюонов согласуются вплоть до 10¹⁶ эВ. Однако при дальнейшем увеличении первичной энергии картина меняется. Наблюдается широкий разброс величины z, особенно в сильно наклонных ШАЛ [2] и на больших расстояниях от оси ливня [3]. Плотности мюонов на Якутской установке в ливнях с $E_0 \ge 10^{18}$ эВ и $\langle \cos \theta \rangle = 0.9$ показали на расстоянии от оси 300 м для модели QGSjet-01-d величину $z \approx 0$, а для QGSjet-II-04 и EPOS-LHC – отрицательные значения [1]. В работе [4] исследована доля мюонов на расстояниях 300, 600 и 1000 м в ливнях с $E_0 \approx 10^{17.7 \div 19.5}$ эВ и $\langle \cos \theta \rangle = 0.9$. Было подтверждено согласие с моделью QGSjet-01-d для первичных протонов ($z \approx 0$). Ниже мы продолжаем исследование доли мюонов в широком интервале зенитных углов ШАЛ с энергией $\approx 10^{19}\,{\rm sB}.$

2. Пространственное распределение частиц ШАЛ.

2.1. Расчеты средних функций пространственного распределения. В работах [5,6] были рассчитаны отклики наземных и подземных сцинтилляционных детекторов Якутской установки в ШАЛ от первичных частиц с энергией выше 10¹⁷ эВ. Для расчетов был взят набор искусственных ливней, сгенерированных с помощью кода CORSIKA-7.3700 [7] с использованием моделей QGSJet-01-d [8] и QGSJet-II 04 [9]. В качестве генератора адронных взаимодействий при энергиях ниже 80 ГэВ был выбран пакет FLUKA2011 [10]. Ливни разыгрывались с энергиями в диапазоне 10¹⁷-10^{19.5} эВ с логарифмическим шагом $\Delta \log_{10}(E_0) = 0.5$ в диапазоне зенитных углов 0°-60°. В расчетах был задействован механизм статистического прореживания [11] со степенью $E_{\text{thin}} = (10^{-6} - 10^{-5})$ и ограничением по весу для всех компонент $w_{\text{max}} = E_0 \cdot E_{\text{thin}}$. Для каждого набора входных параметров (E_0, θ) было сгенерировано от 200 до 500 событий, на основе статистики которых строились функции пространственного распределения (ФПР) отклика детекторов с радиальным логарифмическим разбиением по расстоянию от оси с шагом $\Delta \log_{10}(R) = 0.04$. На рисунке 1 в качестве примера показаны расчеты откликов ФПР, измеряемые наземными (all) и подземными (muons) сцинтилляционными детекторами Якутской установки от разных первичных частиц. На рисунке 2 изображены

¹⁾e-mail: glushkov@ikfia.ysn.ru

Рис. 1. (Цветной онлайн) ФПР откликов наземных и подземных сцинтилляционных детекторов с порогом $E_{\mu} \approx 1.0 \times \sec \theta \, \Gamma$ эВ от разных первичных частиц с энергией $E_0 \approx 10^{19}$ зВ в ШАЛ с $\cos \theta = 0.90$, вычисленные по модели QGSjet-01-d [6]

Рис. 2. (Цветной онлайн) Зенитно-угловые зависимости откликов наземных и подземных сцинтилляционных детекторов от разных первичных частиц с энергией $E_0 \approx 10^{19}$ эВ на расстоянии от оси ливня 600 м, вычисленные по модели QGSjet-01-d [6] (обозначения на рис. 1). Темные кружки и квадраты – экспериментальные данные (см. ниже)

отклики частиц ШАЛ с $E_0 = 10^{19}$ эВ на расстояниях от оси ливня 600 м в событиях с разными зенитными углами. Все плотности приведены к $E_0 = 10^{19}$ путем их умножения на нормировочные коэффициенты $10^{19}/\langle E_0 \rangle$.

2.2. Отбор и обработка ливней. Были рассмотрены средние плотности всех частиц ШАЛ $\langle \rho_s(\theta) \rangle$ и мюонов $\langle \rho_\mu(\theta) \rangle$ с пороговой энергией $E_\mu \approx 1.0 \sec\theta \Gamma$ эВ, измеренные на расстояниях от оси 600 м в ливнях со средними зенитными углами $\langle \cos \theta \rangle = 0.95, 0.90, 0.85, 0.80, 0.75, 0.65$ и

Письма в ЖЭТФ том 117 вып. 3-4 2023

0.55. Экспериментальные ФПР обеих компонент строились в интервалах $\Delta \cos \theta = 0.1$, с шагом по энергии $\Delta \log_{10} E_0 = 0.2$. Оси ливней отбирались в центральном круге установки с радиусом 1 км и были найдены с точностью не хуже 50 м. Точность определения $\rho_{s,600}(\theta)$ в индивидуальных ШАЛ была не хуже 10%. Первичная энергия ливней находилась из соотношений [12]:

$$E_0 = (3.76 \pm 0.3) \times 10^{17} (\rho_s, 600(0^\circ))^{1.02 \pm 0.02}$$
[9B], (2)

$$\rho_{s,600}(0^{\circ}) = \rho_{s,600}(\theta) \exp((\sec \theta - 1) \times 1020/\lambda) \, [\mathrm{M}^{-2}],$$
(3)

с пробегом поглощения λ , показанным на рис. 3; $\rho_{s,600}(\theta)$ – экспериментально измеренная плотность.

Рис. 3. Значения пробегов поглощения в (3) при пересчете $\rho_{s,600}(\theta)$ от наклонных к вертикальным ливням по модели QGSjet-01-d для первичных протонов (*P*), смешанного состава и ядер железа (Fe) в зависимости от E_0 . Цифры – предельно допустимые значения $\cos \theta$ [12]

Смешанный состав брался из эксперимента [12]. Соотношение (2) однозначно связывает $\rho_{s,600}(0^{\circ})$ и E_0 при любом составе первичных частиц благодаря тому, что при $R \approx 600$ м ФПР всех каскадных частиц ШАЛ пересекаются между собой. В случае с первичными фотонами все три ФПР пересекаются при $R \approx 450$ м (рис. 1). При построении ФПР плотности частиц в отдельных ливнях умножались на нормировочный коэффициент $\langle E_0 \rangle / E_0$ ($\langle E_0 \rangle$ – средняя энергия в группе) и усреднялись между собой в интервалах $\log_{10}(R_i)$, $\log_{10}(R_i) + 0.04$. Средние плотности частиц в этих интервалах находились по формуле

$$\langle \rho_s(R_i) \rangle = \left(\sum_{k=1}^N \rho_k(R_i) \right) / N,$$
 (4)

где N – число показаний детекторов на расстояниях от оси. Полученные таким образом средние $\Phi \Pi P$ аппроксимировались функцией:

$$\rho_s(R,\theta) = \rho_{s,600}(\theta)(600/R)^2(608/(R+8))^{b_s-2} \times ((600+R_1)/(R+R_1))^{10},$$
(5)

где $R_1 = 10^4$ м. Величины $\rho_{s,600}(\theta)$ и b_s были свободными параметрами, которые находились методом наименьших квадратов с помощью χ^2 -минимизации.

ФПР мюонов строились аналогичным образом. Средние плотности находились по формуле

$$\langle \rho_{\mu} \rangle(R_i) \rangle = \left(\sum_{n=1}^{n_1} \rho_n(R_i) \right) / (N_1 + N_0), \qquad (6)$$

где N_1 и N_0 – число ненулевых и нулевых показаний мюонных детекторов на расстояниях от оси в интервалах ($\log_{10}(R_i)$, $\log_{10}(R_i) + 0.04$). Нулевые показания N_0 относятся к случаям, когда детекторы не зарегистрировали ни одного мюона, но находились в режиме ожидания. ФПР аппроксимировались функцией

$$\rho_{\mu}(R,\theta) = \rho_{\mu,600}(\theta)(600/R)^{0.75}(880/(R+280))^{b_{\mu}-0.75} \times ((600+R_1)/(R+R_1))^{6.5},$$
(7)

где $R_1 = 2000$ м. Наиболее подходящие значения b_{μ} и $\rho_{\mu,600}(\theta)$ в (7) находились методом наименьших квадратов с помощью χ^2 -минимизации.

3. Полученные результаты и обсуждения. На рисунке 4 в качестве примера показана одна из средних ФПР мюонов, полученная на эксперименте. Ее плотность при R = 600 м, нормированная на среднюю первичную энергию ШАЛ, равна $\log_{10}(\rho_{\mu,600}(37^{\circ}) \times 10^{19}/\langle E_0 \rangle) = 0.538 \pm 0.017$. Остальные экспериментальные данные получены аналогично.

На рисунке 2 видно, что измеренные наземными и подземными детекторами отклики частиц ШАЛ оказались меньше ожидаемых от первичных протонов, а плотности мюонов – существенно меньше. Такой результат возможен в силу разных причин. Одна из них может быть связана с оценкой энергии на эксперименте. Первый сомножитель в формуле (2) отражает систематическую ошибку 8 % из-за неопределенности самого метода калибровки Якутской установки [12]. Формула (3) добавляет еще от 0 до 15% из-за зенитно-угловой неопределенности пересчета $\rho_{s,600}(\theta)$ к вертикали. Это связано с некоторой зависимостью параметра λ в формуле (3) от атомного номера ядра (см., например, рис. 2), а также от модели развития ШАЛ. Априори ни то, ни другое заранее не известны.

Рис. 4. (Цветной онлайн) Средняя ФПР мюонов с $\langle E_0 \rangle = 8.93 \times 10^{18}$ эВ и $\langle \cos \theta \rangle \approx 0.8$. Линия – аппроксимация (7) с параметрами $\langle b_{\mu} \rangle = 2.140 \pm 0.027$ и $\langle \log_{10}(\rho_{\mu,600}) \rangle = 0.488 \pm 0.02$. Критерий согласия обработки $\chi^2 = 25.1$ для всех точек

Чтобы понять полученный выше результат, допустим, что энергия в ливнях завышена на величину разногласия между теорией и экспериментом для наземных детекторов, т.е. на ≈ 10 %. Если ее уменьшить на эту величину, на рис. 2 будет согласие всех измеренных наземными детекторами плотностей (темные кружки) с расчетными. Плотности мюонов на рис. 2 из-за перенормировки энергии тоже поднимутся вверх на ≈ 10 %. При этом первые две из них (с $\sec \theta \approx 1.05$ и 1.11) согласуются с расчетами по модели QGSjet-01-d. Остальные останутся на $\approx 10\%$ меньше, чем ожидается теоретически. Применение соотношения (1) к экспериментальным данным на рис. 2 дает результаты, показанные в табл. 1. Ошибки суммируют как статистику ливней при построении средних ФПР, так и все другие ошибки обработки индивидуальных событий (направления прихода, координат оси и энергию ШАЛ). Их трудно разделить между собой, да и в этом нет необходимости. Они аккумулируются в средних величинах $\langle \rho_{s,600}(\theta) \rangle$ и $\langle \rho_{\mu,600}(\theta) \rangle$ (см., например, рис. 3). Первые два столбца в табл. 1 согласуются с нашими оценками в обзоре [1]. Остальные в логике этого параметра утрачивают физический смысл. Объяснить их какими-либо методическими искажениями в эксперименте не удается.

Таблица 1. *z*-фактор (1) в группах ливней с разными зенитными углами

$\sec \theta$	1.052	1.111	1.176	1.250	1.333	1.538	1.818
z	0.0	0.0	-0.4	-0.7	-0.7	-0.7	-0.7
$\pm \Delta z$	0.10	0.10	0.2	0.2	0.2	0.3	0.3

Мы наблюдаем еще одну мюонную загадку в наклонных ливнях с энергией $\approx 10^{19}$ эВ, но с противоположным отмеченному вначале эффектом: а именно, недостаток плотности измеренных мюонов по сравнению с моделями QGSjet-01-d и QGSjet-II-04 для первичных протонов. Все выше сказанные рассуждения о гипотетическом сдвиге энергии на 10% связаны только с неопределенностью первого сомножителя в формуле (2), который обусловлен методикой абсолютной калибровкой энергии первичных частиц на Якутской установке [12]. Мы допускаем возможность дальнейшего уточнения в этом вопросе по мере развития эксперимента.

На первый взгляд, полученные выше результаты критичны к ошибке определения первичной энергии на эксперименте, но это не совсем так. Если средние ФПР обеих рассмотренных компонент ШАЛ строятся из одной исходной выборки ливней с энергией $\langle E_0 \rangle$, то доля мюонов $p(600 = \langle \rho_{\mu,600} \rangle / \langle \rho_{s,600} \rangle =$ $= (\langle \rho_{\mu,600} \rangle / \langle E_0 \rangle) / (\langle \rho_{s,600} \rangle / \langle E_0 \rangle)$ в этой выборке практически не зависит от самой энергии. Она показана на рис. 5 и получена из данных рис. 2. Здесь прямо

Рис. 5. (Цветной онлайн) Зенитно-угловые зависимости доли мюонов $\langle \log_{10}(\rho_{\mu,600}/\rho_{s,600}) \rangle$ в ШАЛ с $E_0 =$ = 10¹⁹ эВ на расстоянии от оси ливня 600 м от первичных протонов (светлые треугольники вниз) и ядер железа (светлые треугольники вверх), вычисленные по модели QGSjet-01-d, а также QGSjet-II-04 для протонов (светлые квадраты) [6]. Темные квадраты – экспериментальные данные

наблюдается недостаток измеренной плотности мюонов по сравнению с ожидаемой в моделях QGSjet-01-d и QGSjet-II-04 для первичных протонов. Решить эту проблему, на наш взгляд, можно, если допустить возможным наличие в КЛ некоторой доли первичных фотонов, мюонов от которых почти на порядок меньше (рис. 2 и рис. 3). Имеются разные оценки

Письма в ЖЭТФ том 117 вып. 3-4 2023

верхнего предела доли фотонов в составе КЛ с рассмотренной энергией [13–15]. По данным Якутской установки [13] она может достигать 10%. В работе [15] среди 33 ливней с энергией выше $2 \cdot 10^{19}$ эВ имеются два безмюонных события с зенитными углами 18° и 42° (доля 6%). Наши расчеты показали, что в случае двухкомпонентного состава первичных частиц из ядер атомов (A) и фотонов (γ) долю каждой из них можно оценить из соотношения:

$$W_A = \log_{10}(P_{\exp}(\theta)/P_{\gamma}(\theta))/\log_{10}(P_A(\theta)/P_{\gamma}(\theta)), \quad (8)$$

$$W_{\gamma} = 1 - W_A, \tag{9}$$

где W_A и W_{γ} – доли ядер и первичных фотонов в общем потоке КЛ. Полученные результаты приведены в табл. 2, где показаны лишь статистические ошибки, вытекающие из анализа средних ФПР целиком. Первые четыре столбца относятся к паре протон–фотон. Видно, что в этих группах с $\sec \theta = 1.053$ и 1.111 средняя доля протонов равна 0.99 ± 0.01 и отличается от остальных пяти, где ее средняя величина равна 0.91 ± 0.03 . В таблице 2 также показаны аналогичные результаты для гипотетической пары ядро железа–фотон. Согласие с экспериментом в этом случае возможно, если доля ПФ будет ≈ 16 %. В настоящее время этот вариант представляется мало вероятным.

4. Заключение. Результаты совместного анализа зенитно-угловых зависимостей плотностей $\langle \rho_{\mu}(600,\theta) \rangle$ и $\langle \rho_s(600,\theta) \rangle$ в событиях с $E_0 \approx 10^{19}$ эВ и с общей выборкой ливней при построении обеих средних ФПР (рис. 2) допускают возможную переоценку энергии по формуле (2) в сторону ее уменьшения на ≈ 10 %. Это предположение нуждается в дополнительном всестороннем исследовании. Доля мюонов $\rho_{\mu,600}/\rho_{s,600}$ на рис. 5 в ливнях с зенитными углами $\theta \leq 38^\circ$ указывает на то, что состав КЛ в этой области энергий, вероятно, близок к протонному. Об этом мы неоднократно говорили ранее [4, 16-19], где отмечали согласие экспериментальных данных Якутской установки с моделями QGSjet-01-d и QGSjet-II-04. В более наклонных ШАЛ наблюдается некоторый недостаток мюонов. У таких ливней *z*-фактор (1) становится меньше нуля и утрачивает физический смысл (табл. 1). Эта трудность, на наш взгляд, не связана с ошибкой оценки первичной энергии ШАЛ на эксперименте, хотя полностью исключить ее в сильно наклонных событиях пока нельзя. Здесь требуется более детальный анализ. Если все же попытаться интерпретировать полученные результаты, то это можно сделать, допустив возможным присутствие в составе КЛ (6–9)% первичных фотонов. Мы планируем

ſ	$\sec \theta$	W_p	$\pm \Delta W_p$	W_{γ}	$\pm W d_{\gamma}$	$W_{\rm Fe}$	$\pm \Delta W_{\rm Fe}$	W_{γ}	$\pm W d_{\gamma}$
ſ	1.053	0.98	0.02	0.02	0.02	0.85	0.02	0.15	0.02
	1.111	1.00	0.02	0.00	0.02	0.83	0.02	0.17	0.02
ſ	1.176	0.95	0.03	0.05	0.03	0.82	0.03	0.18	0.03
ſ	1.250	0.92	0.03	0.08	0.03	0.84	0.03	0.16	0.03
	1.333	0.91	0.03	0.09	0.03	0.85	0.03	0.15	0.03
	1.538	0.91	0.04	0.09	0.04	0.84	0.04	0.16	0.04
	1.818	0.87	0.05	0.13	0.05	0.87	0.05	0.13	0.05
ſ	среднее	0.93	0.03	0.07	0.03	0.84	0.03	0.16	0.03

Таблица 2. Доли протонов (или ядер железа) в паре с первичными фотонами в общем потоке КЛ в ливнях с разными зенитными углами

продолжить исследования в этом направлении дальше.

- H. P. Dembinski, J. C. Arteaga-Velázquez, L. Cazon et al. (Collaboration), arXiv: 1902.08124 v1 [astro-ph.HE] 21 Feb 2019.
- A. Aab et al. (Pierre Auger Collaboration), Phys. Rev. Lett. 117, 192001 (2016).
- R. U. Abbasi et al. (Telescope Array Collaboration), Phys. Rev. D 98, 022002 (2018).
- А.В. Глушков, К.Г. Лебедев, А.В. Сабуров, Изв. РАН, сер. физ. (2022), в печати; arXiv:2301.12268 v1 [astro-ph.HE] 28 Jan 2023.
- A. V. Glushkov, M. I. Pravdin, and A. Sabourov, Phys. Rev. D 90, 012005 (2014).
- А.В. Сабуров, Пространственное распределение частиц ШАЛ с энергией выше 10¹⁷ эВ по данным Якутской установки. Дисс. ... канд. физ.-мат. наук. ИЯИ РАН, М. (2018), 146 с.
- D. Heck, J. Knapp, J.N. Capdevielle, G. Schatz, and T. Thoun, CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers. Forshungszentrum Karlsruhe, FZKA 6019, 90 (1988).
- N.N. Kalmykov, S.S. Ostapchenko, and A.I. Pavlov, Nucl. Phys. B Proc. Suppl. 52, 17 (1997).
- 9. S. Ostapchenko, Phys. Rev. D 83, 014018 (2011).

- A. Ferrari, P. R. Sala, A. Fassó, and J. Ranft, *FLUKA:* A multi-particle transport code, CERN, Geneva (2005), 405 p.
- W. R. Nelson, H. Hirayama, and D. W. O. Rogers, *The EGS4 code system (Report SLAC-R-265)*, SLAC, Stanford (1985), 398 p.
- А.В. Глушков, М.И. Правдин, А.В. Сабуров, ЯФ
 81, 535 (2018) [A.V. Glushkov, M.I. Pravdin, and A.V. Saburov, Phys. of Atomic Nuclei 81, 575 (2018)]; doi: 10.1134/S0044002718040049.
- A. V. Glushkov, I. T. Makarov, M. I. Pravdin et al. (Collaboration), arXiv: 0907.0374 v1 [astro-ph.HE] 2 Jul 2009.
- R. U. Abbasi et al. (Telescope Array Collaboration), Astropart. Phys. 110, 8 (2019).
- A. V. Glushkov, I. T. Makarov, M. I. Pravdin, I. E. Sleptsov, D. S. Gorbunov, G. I. Rubtsov, and S. V. Troitsky, Pis'ma v ZhETF 87(4), 220 (2008).
- А. В. Глушков, А. В. Сабуров, Письма в ЖЭТФ 100, 793 (2014).
- 17. А.В. Глушков, А.В. Сабуров, ЖЭТФ **146**, 968 (2014).
- А.В. Глушков, М.И. Правдин, А.В. Сабуров, Письма в АЖ 44, 643 (2018); doi:10.1134/S0320010818100029.
- А. В. Глушков, А. В. Сабуров, Письма в ЖЭТФ 109, 579 (2019).