Эффект резистивного переключения в мемристорах TaN/HfO_x/Ni с филаментом, сформированным под действием локальной электронно-лучевой кристаллизации

В. А. Воронковский⁺¹⁾, А. К. Герасимова⁺, В. Ш. Алиев^{+*}

+ Институт физики полупроводников им. А.В.Ржанова Сибирского отделения РАН, 630090 Новосибирск, Россия

*Новосибирский государственный технический университет, 630073 Новосибирск, Россия

Поступила в редакцию 9 декабря 2022 г. После переработки 2 марта 2023 г. Принята к публикации 5 марта 2023 г.

Изучено влияние интенсивного воздействия электронного луча на слой нестехиометрического оксида HfO_x ($x \approx 1.8$) в составе мемристора со структурой $TaN/HfO_x/Ni$ на его электрофизические свойства. Обнаружено, что в результате воздействия в пленке HfO_x образуются кристаллические фазы h-Hf, $m-HfO_2$, $o-HfO_2$ и $t-HfO_2$. Установлено, что при определенных значениях флюенса электронов мемристоры демонстрируют резистивное переключение. При этом, по сравнению с необлученными мемристорами, у таких мемристоров в несколько раз меньше величины напряжений резистивного переключения. Кроме того, у них наблюдается кратное снижение разброса напряжений резистивного переключения, а также сопротивлений в низко- и высокоомном состояниях. Вольт-амперные характеристики полученных мемристоров указывают на то, что транспорт заряда в них описывается механизмом тока, ограниченным пространственным зарядом.

DOI: 10.31857/S123456782307011X, EDN: kktpgx

Разработка и оптимизация ячеек ReRAM (мемристоров) до сих пор остается актуальной задачей. Принцип действия мемристора основывается на обратимом изменении его сопротивления при подаче напряжения определенной величины и полярности. При первом переключении мемристора осуществляется его формовка, которая завершается образованием в его активном диэлектрическом слое тонкого (диаметром от единиц до десятков нм [1–3]) проводящего филамента, соединяющего электроды мемристора. Формирование филамента при этом может осуществляться либо за счет электродиффузии атомов из электрода мемристора (металлический филамент) [3], либо за счет генерации вакансий кислорода (неметаллический филамент) [1, 2].

Несмотря на большой интерес к тематике ReRAM [4–6], в данной области решение ряда вопросов до сих пор остается актуальным. Одним из таких вопросов является необходимость формовки мемристора, поскольку стохастический характер формовки приводит к невоспроизводимости электрофизических характеристик мемристоров на одном и том же образце. Кроме того, напряжения формовки могут значительно превышать напряжения последую-

щих переключений, что также является нежелательным. Актуальным также является решение проблемы разброса напряжений переключения состояний и сопротивлений в низко- и высокоомном состояниях от одного цикла резистивного переключения мемристора к другому, которые могут составлять 0.5-1.0 В и 1-2 порядка, соответственно [7, 8]. Данный разброс, по всей видимости, также связан со стохастической природой образования и разрушения филамента. Так, из-за наличия неоднородностей на границе металл/диэлектрик в мемристоре возможно присутствие нескольких мест, в которых концентрируется электрическое поле. В результате, это приводит к одновременному зарождению и разрастанию конкурирующих филаментов под одним общим электродом мемристора [1, 9]. По всей видимости, это и обуславливает нежелательный большой разброс сопротивлений и снижает устойчивость резистивных переключений.

Таким образом, для решения проблем, вытекающих из формовки, необходимо максимально локализовать область диэлектрика, в которой образуется филамент. Известно, что разброс сопротивлений мемристоров в низко- и высокоомном состояниях может быть снижен в несколько раз за счет включения массива металлических наноостровков в объем ди-

¹⁾e-mail: voronkovskii@isp.nsc.ru

электрического слоя мемристора [10] либо их включения в межфазную границу металл/диэлектрик [8]. Считается, что это происходит вследствие локального усиления электрического поля в областях диэлектрика с наноостровками, что способствует более интенсивной генерации вакансий кислорода, участвующих в формировании проводящего филамента.

В данной работе исследуется новый подход, заключающийся в использовании электронного луча для локализации области формирования филамента. Как было показано в нашей работе [11], воздействие электронного луча на пленку HfO_{x<2} приводит к образованию в ней кристаллических фаз в локальной области, определяемой пятном от электронного луча диаметром около нескольких десятков нм. В то же время, наши исследования мемристоров со структурой TaN/HfO_x/Ni показали, что филамент в них имеет неметаллическую природу [12]. В связи с этим можно ожидать, что интенсивное воздействие электронного луча на пленку оксида гафния в составе такого мемристора приведет к полному формированию филамента или, по крайней мере, его затравки. Следовательно, такое воздействие должно привести к локализации области образования филамента. Целью данной работы является исследование возможности локализации формирования проводящего филамента за счет интенсивного воздействия электронного луча в мемристорах со структурой $TaN/HfO_x/Ni$.

Для исследований было подготовлено два типа образцов. Образцы первого типа представляли собой пленки нестехиометрического оксида HfO_x толщиной около 30 нм на медных подложках с углеродным подслоем и использовались для исследования структурных изменений под действием электронного луча по изображениям с просвечивающего электронного микроскопа (ПЭМ) и картинам дифракции. Слой HfO_x наносился методом ионно-лучевого распыления-осаждения (ИЛРО) при парциальном давлении кислорода $P(O_2) = 2.4 \cdot 10^{-3} \Pi a$, находящемся внутри диапазона давлений, при которых в мемристорах $TaN/HfO_x/Ni$ наблюдается эффект резистивного переключения и соответствует $x \approx 1.81$ [13]. Локальная электронно-лучевая кристаллизация слоя HfO_x осуществлялась в камере сканирующего электронного микроскопа (СЭМ) Hitachi SU8220 в области 50 \times 38 hm^2 электронным лучом с диаметром 1.5 нм, энергией электронов $E_{\rm e} = 15 \, {\rm ksB}$ при токе эмиссии электронов I_e = 1 нА. Интенсивность воздействия электронного луча на пленку оксида варыировалась за счет изменения продолжительности воздействия t = 5, 10 и 15 мин с отклонением не боле
е $5\,{\rm c.}$ Картины ПЭМ снимались с помощью TITAN 80–300 CS.

Образцы второго типа имели структуру TaN/HfO_x/Ni и использовались для изучения транспорта заряда. Слой TaN толщиной около 50 нм наносился на подложку Si/SiO₂ методом ИЛРО. Слой HfO_x наносился тем же методом и при тех же условиях, что и для образцов первого типа. Затем на пленку HfO_x в камере СЭМ оказывалось локальное электронно-лучевое воздействие в местах будущего нахождения верхнего массива электродов. Воздействие осуществлялось при тех же условиях, что и для образцов первого типа. Пространственный дрейф облучаемой области из-за зарядки поверхности был существенно минимизирован за счет электрического контакта прижимной лапки, удерживающей образец на держателе СЭМ, с нижним ТаN электродом образца. Поверхность оксидного слоя после локального электронно-лучевого воздействия также была просканирована с использованием атомно-силового микроскопа (ACM) NT-MDT Solver Рго в полуконтактном режиме. Радиус закругления зонда АСМ не превышал 10 нм. На завершающем этапе изготовления этих образцов на них методом электронно-лучевого испарения наносился массив Ni электродов толщиной 50 нм. Для этого использовался специальный держатель образца, который обеспечивал совмещение областей слоя HfO_x , подвергавшихся электронно-лучевому воздействию, с будущими Ni электродами. Вольт-амперные характеристики (ВАХ) образцов измерялись с помощью анализатора полупроводниковых приборов Agilent B1500A.

Длительность воздействия электронного луча на слой оксида выбиралась из следующих соображений. В нашей предыдущей работе, в которой изучалось локальное воздействие на пленку HfO_x электронного луча ПЭМ [11], были определены условия, при которых в ней появляются первые признаки кристаллизации. Из этих условий по формуле (1) была определена минимальная необходимая величина флюенса электронов $\Phi_{\min} = 1.9 \cdot 10^{22} \, \text{см}^{-2}$. При облучении минимальной доступной области в СЭМ размером $50 \times 38 \,\mathrm{mm}^2$ в течение 5 мин, величина флюенса электронов составляет $9.9 \cdot 10^{22} \,\mathrm{cm}^{-2}$, что, таким образом, превышает минимальный необходимый порог для начала кристаллизации. Соответственно, для времени облучения 10 мин $\Phi = 2.0 \cdot 10^{23} \, \mathrm{cm}^{-2}$, а 15 мин $-3.0 \cdot 10^{23}$ см⁻².

$$\Phi = \frac{N_{\rm e}}{S} = \frac{I_{\rm e}t}{qS},\tag{1}$$

где Φ – флюенс электронов, $N_{\rm e}$ – количество электронов, прошедших через площадку площадью S за время $t, I_{\rm e}$ – ток эмиссии электронов, q – заряд электрона.

Важно отметить, что энергии $E_{\rm e} = 15$ кэВ в СЭМ, по нашим оценкам, достаточно для полного прохождения электронами слоя оксида толщиной 30 нм. Вопрос глубины проникновения электронов в мишень нетривиальный, однако ее можно грубо оценить по формуле Канайя–Окаямы [14] (2). В свою очередь, это позволяет оценить диффузионную длину падающих электронов в твердом теле (3), которая для такой величины энергии составила 224 нм.

$$R = \frac{3E_{\rm e}^{5/3}}{5K_{\rm e}NZ^{8/9}},\tag{2}$$

$$x_{\rm D} = \frac{R}{1 + 0.183Z^{2/3}},\tag{3}$$

где R – максимальная глубина проникновения падающих электронов в мишень, $E_{\rm e}$ – энергия падающих электронов (в эВ), N – количество атомов в единице объема мишени, Z – атомный номер материала мишени, $x_{\rm D}$ – диффузионная длина падающих электронов.

Как следует из полученных ПЭМ-изображений пленки HfO_x на медной сетке с углеродным подслоем, при всех использованных значениях Φ в облучавшихся электронным лучом участках присутсвуют признаки кристаллизации. В то же время, в других областях пленки оксида гафния признаков наличия кристаллических фаз не обнаружено. На рисунке 1а представлено ПЭМ-изображение участка пленки HfO_x , облучавшегося при $\Phi = 3.0 \cdot 10^{23}$ см⁻². Ана-

Рис. 1. (а) – ПЭМ-изображение области пленки HfO_x, подвергнутой воздействию электронного луча с $\Phi = 3.0 \cdot 10^{23} \,\mathrm{cm^{-2}}$ ($t = 15 \,\mathrm{мин}$), и соответствующая картина дифракции (b)

лиз дифракционных паттернов пленки HfO_x в участках, подвергавшихся воздействию электронного луча, указывает на образование кристаллических фаз h-Hf, а также $m-HfO_2$, $o-HfO_2$ и $t-HfO_2$ (рис. 1b). Отметим, что полученный результат, в целом, совпадает с полученным нами ранее результатом при облучении пленки оксида гафния электронным лучом в ПЭМ [11].

Анализ полученных с использованием ACM данных показал, что максимальное отклонение высоты рельефа слоя HfO_x в областях, подвергавшихся локальному электронно-лучевому воздействию, не превышает 3 нм.

ВАХ мемристоров, полученных при различных величинах Ф, представлены на рис. 2а–с. Для всех

Рис. 2. (Цветной онлайн) ВАХ формовки и резистивного переключения мемристоров $\text{TaN/HfO}_x/\text{Ni}$, полученных при $\Phi = 0$ (a), $2.0 \cdot 10^{23} \text{ см}^{-2}$ (b) и $3.0 \cdot 10^{23} \text{ см}^{-2}$ (c). Стрелками показано направление развертки напряжения

мемристоров требовалось провести формовку, однако напряжение формовки было достаточно близким к напряжению переключения из высокоомного состояния в низкоомное. В ходе формовки для предотвращения необратимого пробоя мемристоров устанавливалось ограничение по максимальному току I_{cc}. Можно видеть, что ВАХ мемристора с $\Phi = 0$ (не подвергавшегося облучению) имеют типичный вид для мемристоров с биполярным переключением состояний, а напряжения резистивного переключения из высокоомного состояния в низкоомное ($U_{\rm SET}$) и обратно (U_{RESET}) составляют около ± 3.5 В. Необходимо отметить, что мемристоры с $\Phi = 0$ на исследованном образце не демонстрировали устойчивого резистивного переключения и после нескольких циклов резистивного переключения выходили из строя. Мемристоры, полученные при $\Phi = 9.9 \cdot 10^{22} \, \text{см}^{-2}$, не демонстрировали эффект резистивного переключения, однако их сопротивление составляло порядка нескольких кОм, что намного ниже значения для исходной пленки HfO_x (рис. 2a). В то же время, мемристоры с $\Phi = 2.0 \cdot 10^{23} \,\mathrm{cm}^{-2}$ и $3.0 \cdot 10^{23} \,\mathrm{cm}^{-2}$ демонстрировали эффект резистивного переключения, причем для них напряжение формовки и напряжение U_{SET} достаточно близки, а напряжения переключения состояний в различных циклах резистивного переключения практически не отличаются друг от друга (рис. 2b, c). Кроме того, низкие значения напряжений переключения в диапазоне 1.0-1.5 В ранее нами не достигались ни при каких значениях величины х для пленки оксида гафния толщиной 30 нм и меньше типичных значений примерно в 2-3 раза [13]. Несмотря на то, что отношение токов в низкоомном и высокоомном состояниях для мемристоров с $\Phi = 2.0 \cdot 10^{23} \, \text{см}^{-2}$ и $3.0 \cdot 10^{23} \, \text{см}^{-2}$ невелико, наблюдаемый эффект изменения проводимости при подаче напряжения определенной величины и полярности связан именно с эффектом резистивного переключения, а не разогревом. При повторных измерениях ВАХ после переключения этих мемристоров в низкоомное либо высокоомное состояние получаемые кривые ВАХ полностью совпадали с измеренными ранее для этих состояний.

Сравнение функций распределения напряжений U_{SET} и U_{RESET} , а также сопротивлений в низко- и высокоомном состояниях (R_{ON} и R_{OFF} , соответственно) для мемристора с $\Phi = 2.0 \cdot 10^{23} \text{ сm}^{-2}$ и необлучавшегося мемристора TaN/HfO_x/Ni из нашей предыдущей работы [13] с x = 1.81, представлено на рис. 3. Видно, что мемристоры на основе пленок HfO_x, облучавшихся электронным пучком, демонстрируют значительное уменьшение разброса напряжений переключения состояний и сопротивлений по сравнению с мемристорами на основе пленок, не подвергавшихся такому воздействию. Так, благодаря использованию электронно-лучевого воздействия, относи-

Рис. 3. (Цветной онлайн) Функции распределения напряжений переключения (a) и сопротивлений (b) мемристоров TaN/HfO_x/Ni (x = 1.81), слой оксида которых подвергался воздействию электронного луча при $\Phi = 2.0 \cdot 10^{23}$ см⁻² (t = 10 мин) и без него (сплошные и пустые точки, соответственно)

тельное среднеквадратичное отклонение CV (отношение среднеквадратического отклонения к математическому ожиданию) величин напряжений $U_{\rm SET}$ и $U_{\rm RESET}$ снизилось в ≈ 2 и ≈ 6 раз, соответственно, сопротивлений $R_{\rm ON}$ – в ≈ 2 раза, а $R_{\rm OFF}$ – на 2 порядка.

Тот факт, что в полученном образце без воздействия электронного луча мемристоры переключаются лишь малое количество раз, объясняется следующим образом. Вид ВАХ таких мемристоров весьма близок к виду ВАХ мемристоров $\text{TaN/HfO}_x/\text{Ni}$ с x = 1.81, изученных нами ранее [13]. При этом x = 1.81 является границей диапазона величин x, при которых наблюдается резистивное переключение. По всей видимости, полученная в настоящей работе пленка HfO_x имеет x, слегка выходящий за рамки этого диапазона, что и объясняет малое количество циклов резистивного переключения.

На рисунке 4а представлены экспериментальные ВАХ мемристора, полученного с использованием

Рис. 4. (Цветной онлайн) (а) – ВАХ мемристора $TaN/HfO_x/Ni$, полученного под воздействием электронного луча при $\Phi = 2.0 \cdot 10^{23} \text{ см}^{-2}$ (t = 10 мин), в двойном логарифмическом масштабе и (b) – аппроксимация его экспериментальных ВАХ (точки) для низко-и высокоомного состояний (LRS и HRS, соответственно) модельными (линии)

электронно-лучевого воздействия при $\Phi = 2.0 \times$ $\times 10^{23} \, {\rm cm}^{-2}$, в двойном логарифмическом масштабе. Как можно видеть, в обоих состояниях мемристора ВАХ при малых напряжениях являются линейными, а по мере увеличения напряжения становятся квадратичными. Аналогичный характер ВАХ наблюдался нами для мемристоров со структурой $TaN/HfO_x/Ni$, слой оксида которых не подвергался воздействию электронного луча [12]. Как было установлено, транспорт заряда в таком случае описывается механизмом тока, ограниченного пространственным зарядом (ТОПЗ). При этом, проводимость мемристора определяется полупроводниковым филаментом с диаметром d_f с некоторой концентрацией донороподобных дефектов N_d и мелких ловушек для носителей заряда N_t. При переключении состояний происходит изменение величин d_f, N_d и N_t, а также степени заполнения ловушек. В низкоомном состоянии транспорт заряда в мемристоре описывается механизмом ТОПЗ в режиме полностью заполненных ловушек, а в высокоомном - механизмом ТОПЗ в режиме частично заполненных ловушек. Такая модель проводимости подробно описана и изучена нами в работе [12]. Учитывая качественное сходство ВАХ и аналогичную структуру мемристора в данной работе, ВАХ мемристоров, подвергавшихся электронно-лучевому воздействию можно описать в рамках описанной выше модели.

Как видно из рис. 4b, BAX, рассчитанные в рамках механизма ТОПЗ для мемристора с $\Phi=2.0\times \times 10^{23}\,{\rm cm}^{-2}$ при комнатной температуре, имеют хорошее согласие с экспериментальными данными.

При аппроксимации ВАХ как низкоомного состояния, так и высокоомного, значения для эффективной массы электрона, подвижности и диэлектрической проницаемости были одинаковыми и составляли $m^* = 0.42 m_0$ (где m_0 – масса электрона), $\mu =$ $= 40 \,\mathrm{cm}^2/(\mathrm{B}\cdot\mathrm{c})$ и $\epsilon = 40$. ВАХ в низкоомном состоянии аппроксимировалась моделью ТОПЗ в режиме полностью заполненных ловушек. При этом использовались следующие значения параметров: $d_{\rm f} =$ = 135 нм, $N_{\rm d} = 2.0 \cdot 10^{19}$ см⁻³ и энергия ионизации донороподобного дефекта $E_{\rm c} - E_{\rm d} = 90$ мэВ. В высокоомном состоянии ВАХ аппроксимировалась в рамках модели ТОПЗ в режиме частично заполненных ловушек при значениях параметров $d_{\rm f} = 96$ нм, $N_{\rm d}~=~8.0\,\cdot\,10^{18}\,{
m cm^{-3}},~E_{
m c}~-E_{
m d}~=~130$ мэВ, энергии ионизации ловуше
к $E_{\rm c}-E_{\rm t}\,=\,40\,{\rm M}{\rm sB}$ и их концентрации $N_{\rm t} = 1.0 \cdot 10^{18} \, {\rm сm}^{-3}$. Полученные значения параметров достаточно близки к полученным ранее для мемристоров без электронно-лучевого воздействия [12]. По сравнению с такими мемристорами, у мемристора с $\Phi = 2.0 \cdot 10^{23} \, \mathrm{cm}^{-2}$ примерно в два раза выше концентрация донороподобных дефектов как в низкоомном, так и высокоомном состояниях. Кроме того, в высокомном состоянии у мемристора с $\Phi = 2.0 \cdot 10^{23} \, \mathrm{cm}^{-2}$ примерно на один порядок ниже концентрация ловушек N_t, из-за чего его проводимость в данном состоянии достаточно высокая. К другим важным отличиям можно отнести отнести высокое значение $\epsilon = 40$ (против 18 в мемристоре, полученном без локальной электронно-лучевой кристаллизации) и значение d_f для высокоомного состояния (96 нм против 35 нм и меньше). Высокое значение є можно объяснить следующим образом. Как следует из полученных нами картин дифракции, в области локальной электронно-лучевой кристаллизации присутствует металлическая Hf фаза. Поскольку такая область играет роль затравки для филамента мемристора, в объем филамента будут включены металлические кластеры. В свою очередь, за счет этого диэлектрическая проницаемость филамента и будет высокой. Большой поперечный размер филамента в высокоомном состоянии связан, по-видимому, с большим размером затравки для филамента, сформированной в ходе локальной электронно- лучевой кристаллизации.

Таким образом, установлено, что воздействие электронного луча СЭМ на пленку HfO_x приводит к зарождению кристаллических фаз h-Hf, $m-HfO_2$, $o-HfO_2$ и $t-HfO_2$ в области, размер которой определяется областью сканирования. Получаемые с таким воздействием мемристоры со структурой $TaN/HfO_x/Ni$ демонстрируют кратно меньший

разброс относительного среднеквадратичного отклонения напряжений резистивного переключения U_{SET} и U_{BESET} (в ≈ 2 и ≈ 6 раз, соответственно) и сопротивлений $R_{\rm ON}$ и $R_{\rm OFF}$ (в два раза ≈ 2 и на ≈ 2 порядка, соответственно), по сравнению с мемристорами с аналогичной структурой без такого воздействия. Учитывая, что локальная электронно-лучевая кристаллизация не приводит к существенному изменению толщины оксидного слоя, наблюдаемый эффект уменьшения разброса электрофизических характеристик связан именно с локализацией области образования филамента за счет образования его затравки в объеме данного слоя. При этом механизм транспорта в таких мемристорах остается прежним и описывается механизмом ТОПЗ.

Работа поддержана Министерством науки и высшего образования Российской Федерации.

Авторы выражают благодарность Ю. А. Живодкову за проведение работ по электроннолучевому воздействию в камере СЭМ Hitachi SU8220, А. К. Гутаковскому за полученные ПЭМизображения, снятые на TITAN 80-300 CS (Центр коллективного пользования "Наноструктуры", ИФП СО РАН, Новосибирск) и А. И. Иванову за осуществление АСМ-исследований.

 D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, S. Han, M. Kim and C.S. Hwang, Nat. Nanotechnol. 5, 148 (2010).

- F. Miao, J. P. Strachan, J. J. Yang, M. X. Zhang, I. Goldfarb, A. C. Torrezan, P. Eschbach, R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams, Adv. Mater. 23, 5633 (2011).
- Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, and M. Liu, Adv. Mater. 24, 1844 (2012).
- 4. I. Valov, Semicond, Sci. and Technol. 32, 093006 (2017).
- Y. Zhang, Z. Wang, J. Zhu, Y. Yang, M. Rao, W. Song, Y. Zhuo, X. Zhang, M. Cui, L. Shen, and R. Huang, Appl. Phys. Lett. 7, 011308 (2020).
- 6. Y.Y. Chen, IEEE T. Electron. Dev. 67, 1420 (2020).
- A. Hardtdegen, H. Zhang, and S. Hoffmann-Eifert, ECS Transactions 75, 177 (2016).
- J. Wang, L. Li, H. Huyan, X. Pan, and S.S. Nonnenmann, Adv. Funct. Mater. 29, 1808430 (2019).
- E. Wu, T. Ando, Y. Kim, R. Muralidhar, E. Cartier, P. Jamison, M. Wang, and V. Narayanan, Appl. Phys. Lett. 116, 082901 (2020).
- P. Bousoulas and D. Tsoukalas, Int. J. High Speed Electron. Syst. 25, 1640007 (2016).
- A. K. Gerasimova, V. S. Aliev, G. K. Krivyakin, and V. A. Voronkovskii, SN Appl. Sci. 2, 1 (2020).
- V. A. Voronkovskii, V. S. Aliev, A. K. Gerasimova, and D. R. Islamov, Mat. Res. Express 6, 076411 (2019).
- V. A. Voronkovskii, V. S. Aliev, A. K. Gerasimova, and D. R. Islamov, Mat. Res. Express 5, 016402 (2018).
- K. A. Kanaya and S. Okayama, J. Phys. D: Appl. Phys. 5, 43 (1972).