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In the present work we studied the magnetocrys-

talline anisotropy of two related single-molecule

magnets [1] with a single rhenium ion in irregular

tilted octahedra (PPh4)2[ReF6]·2H2O, (1), (PPh4

stands for tetraphenylphosphonium, (C6H5)4P), and

[Zn(viz)4(ReF6)], (2), (viz = 1-vinylimidazole) [2].

All density functional theory (DFT) calculations

were performed using the VASP code [3–6] with

projector-augmented wave method (PAW) [7], employ-

ing Perdew–Burke–Ernzerhof (PBE) version of the

generalized gradient approximation (GGA) exchange-

correlation functional [8] and taking into account

strong Coulomb correlations via rotationally invariant

DFT +U approach after Dudarev et al. [9].

In order to estimate single-ion anisotropy (SIA) we

performed total energy calculations with spin-orbit cou-

pling (GGA+U + SOC) for different spin directions and

mapped these results onto the model, where the SIA is

described by the following Hamiltonian:

ĤSIA = D · Ŝ2
z . (1)

The obtained results have shown the easy-plane

anisotropy for these 5d3 systems with large single-ion

anisotropy parameters D equal to 11.7 K for (1) and

16.8 K for (2). Magnetic moments for both complexes

are less than expected 3µB. It can be explained by the

covalency effects and substantial spin-orbit coupling.

Due to irregular tilted [ReF6]
2− octahedra, there is a

strong t2g − eg crystal-field splitting of the order of

3.5 eV. Since symmetry of the crystal-field is lower than

cubic, t2g levels get an additional splitting onto nearly

degenerate xz and yz orbitals, that are lower in en-

ergy than xy orbital (see Fig. 1). The spin-orbit coupling

mixes the ground state singlet Γ2 with orbital triplet Γ5,

lying on 10Dq higher (t2g − eg crystal field splitting pa-

rameter in spectroscopy) [10]. This triplet is split by the

non-cubic crystal-field onto a doublet, characterized by
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fictitious orbital moment l̃z = ±1 and having energy

∆1, and a singlet with l̃z = 0 and ∆0.

In the second order of the perturbation theory one

can take into account the mixing of these Γ5 states with

the ground state (Γ2) due to the spin-orbit coupling.

This admixture splits the ground state into two spin

doublets and the value of this splitting is proportional

to the spin-orbit coupling constant λ [10]:

2D = −
8λ2

∆0
+

8λ2

∆1
. (2)

Using estimation of λ = 320 meV for Re4+ [11]

and the crystal-field splittings shown in Fig. 1 for

(PPh4)2[ReF6]·2H2O, one can see that such a consid-

eration gives a reasonable estimation of D = 14.6K.

This agrees with the obtained single-ion anisotropy pa-

rameters D presented above.

Fig. 1. Results of the Wannier function projection of the

non-magnetic DFT Hamiltonian for (1). We used the local

coordinate system where axes are directed as much as pos-

sible to the ligand to calculate on-site energies of different

Re 5d orbitals
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