Загадка мюонов в ШАЛ сверхвысоких энергий по данным Якутской установки и эксперимента Ожэ

А. В. Глушков¹⁾, А. В. Сабуров¹⁾, Л. Т. Ксенофонтов¹⁾, К. Г. Лебедев¹⁾

Институт космофизических исследований и аэрономии им. Ю.Г.Шафера Сибирского отделения РАН, 677027 Якутск, Россия

> Поступила в редакцию 22 февраля 2023 г. После переработки 31 марта 2023 г. Принята к публикации 4 апреля 2023 г.

Рассмотрено пространственное распределение частиц широких атмосферных ливней от космических лучей в области энергий выше 10¹⁷ эВ, зарегистрированных на Якутской комплексной установке. Экспериментально измеренные плотности частиц сопоставляются с предсказаниями, полученными в рамках трех моделей адронных взаимодействий при сверхвысоких энергиях. Оценка массового состава, полученная из показаний наземных и подземных детекторов установки, согласуется с оценками, сделанными на основе измерений пространственного распределения черенковского излучения атмосферных ливней. Приводится сравнение с результатами прямых измерений мюонной компоненты, выполненных на установке Ожэ. Показано, что плотности потока мюонов, измеренные на Якутской установке, согласуются с флуоресцентными измерениями и не согласуются с мюонными результатами, полученными на установке Ожэ.

DOI: 10.31857/S1234567823090033, EDN: boiupi

1. Введение. Проблема повышенного содержания мюонов в широких атмосферных ливнях (ШАЛ) от космических лучей (КЛ) сверхвысоких энергий (КЛСВЭ) в сравнении с модельными предсказаниями отмечается исследователями уже больше 20 лет [1]. В совместном анализе, опубликованном международной рабочей группой по этой проблеме, были рассмотрены данные восьми установок: ШАЛ-МГУ, IceCube, KASCADE-Grande, NEVOD-DECOR, The Pierre Auger Observatory (Ожэ), SUGAR, Telescope Array (ТА) и Якутской комплексной установки [2]. Для сравнения данных разных экспериментов был введен безразмерный масштабный параметр:

$$z = \frac{\ln \rho_{\rm MD}^{\rm exp} - \ln \rho_{\rm MD}^p}{\ln \rho_{\rm MD}^{\rm Fe} - \ln \rho_{\rm MD}^p},\tag{1}$$

где $\rho_{\rm MD}^{\rm exp}$ – плотность мюонов, измеренная на эксперименте; $\rho_{\rm MD}^{p}$ и $\rho_{\rm MD}^{\rm Fe}$ – плотности мюонов, вычисленные в ливнях от первичных протонов (*p*) и ядер железа (Fe) для детекторов конкретных установок ШАЛ. В результате было показано, что модельные расчеты согласуются вплоть до 10^{16} эВ. Однако при дальнейшем увеличении первичной энергии картина меняется. Наблюдается широкий разброс величины *z*, особенно в области предельно высоких энергий, сильно

наклонных ШАЛ [3] и на больших расстояниях от оси ливня [4]. В случае Якутской установки были использованы плотности мюонов, вычисленные на расстоянии от оси 300 м в ливнях с первичной энергией $E_0 \ge 10^{18}$ эВ и средним зенитным углом прихода $\langle \cos \theta \rangle = 0.9$. В случае модели QGSJet01 [5] они дали величину параметра $z \simeq 0$, а для QGSJet-II.04 [6] и EPOS-LHC [7] – отрицательные значения [2]. В работе [8] исследована доля мюонов на расстояниях от оси 300, 600 и 1000 м в ливнях с $E_0 \simeq 10^{17.7-19.5}$ эВ и $\langle \cos \theta \rangle = 0.9$. В работах [9, 10] рассмотрены зенитноугловые зависимости доли мюонов на расстоянии 600 м от оси в ливнях с $E_0 \simeq 10^{18}$ и 10^{19} эВ с зенитными углами $\cos \theta \ge 0.5$. В работах [8–10] было подтверждено согласие эксперимента с предсказаниями модели QGSJet01 в случае первичных протонов $(z \simeq 0).$

Коллаборация Ожэ сообщила о прямых измерениях мюонов в ШАЛ с энергиями $2 \times 10^{17} - 2 \times 10^{18}$ эВ и зенитными углами $\theta \leq 45^{\circ}$ [11]. Измерения проводились сцинтилляционными детекторами площадью 5 и 10 m² с порогом регистрации $\simeq 1.0 \times \sec \theta$ ГэВ (помещенными под слоем грунта толщиной 2.3 м). Один из результатов приведен на рис. 1. В работе рассматривался параметр $\rho_{\rm MD}(450, 35^{\circ})$ – плотность мюонов, измеренная в индивидуальных ливнях на расстоянии от оси 450 м и приведенная к зенитному углу 35° с помощью соотношений:

¹⁾e-mail: glushkov@ikfia.ysn.ru; vs.tema@gmail.com; ksenofon@ikfia.ysn.ru; LebedevKG@ikfia.ysn.ru

$$\rho_{\rm MD}(450, 35^{\circ}) = \frac{\rho_{\rm MD}(450, \theta)}{f_{\rm att}(\theta)},$$
(2)

$$f_{\rm att}(\theta) = 1 + (0.54 \pm 0.10)x + (1.02 \pm 0.69)x^2,$$
 (3)

где $x = \cos^2 \theta - \cos^2 35^\circ$. Стоит подчеркнуть, что в этом эксперименте мюонная компонента ШАЛ на установке Ожэ была выделена непосредственно, аналогично тому, как это делается на Якутской установке. Прямая интерпретация результатов, изложенных в [11], не исключает происхождения рассмотренных событий от первичных ядер железа. Эти результаты противоречат не только выводам работ [8–10], но и измерениям, выполненным в том же эксперименте с использованием другого метода.

Рис. 1. (Цветной онлайн) Плотности мюонов в ШАЛ на расстоянии от оси 450 м, нормированные на первичную энергию. Результаты прямых измерений, выполненных на установке Ожэ на подземных сцинтилляционных детекторах с порогом $\simeq 1.0 \times \sec 35^{\circ}$ ГэВ. Данные были взяты из рис. 11 в работе [11]

На рисунке 2 приведены оценки массового состава КЛ, полученные в нескольких экспериментах с помощью разных методик в рамках модели QGSJet-II.04. Показанные на нем результаты Якутской установки были получены тремя независимыми методами: из функции пространственного распределения (ФПР) мюонной компоненты, регистрируемой мюонными детекторами (MD) с порогом ~ 1 ГэВ [12]; из формы ФПР заряженной и электромагнитной компонент ШАЛ, регистрируемых наземными детекторами мастерных станций (SD) [13]; и путем измерения потока черенковского излучения (ЧИ) ШАЛ (CD) [14]. Видно, что в пределах ошибок эксперимента все три компоненты ШАЛ дают согласованные между собой результаты. Также они согласуются с оценками, полученными по данным ЧИ на установке Тунка-133 [15] и величинами, рассчитанными из средних глубин максимума каскадной кривой ШАЛ ($\langle x_{max} \rangle$), измеренных на установке ТА [16]. Оценки, вытекающие из значений параметра z установки Ожэ [11], представлены тремя наборами данных: согласно измерениям $\langle x_{max} \rangle$ методом регистрации флуоресцентного излучения ШАЛ (FD), по измерениям мюонной компоненты с порогом $\simeq 1$ Гэв (MD) и наземной компоненты в сильно наклонных ливнях (SD). Как видно из рис. 2, прямые измерения мюонов ШАЛ подземными сцинтилляционными детекторами и в наклонных ливнях наземными детекторами на установке Ожэ выбиваются из общего тренда и побуждают рассмотреть их более подробно.

Рис. 2. (Цветной онлайн) Оценки среднего массового состава КЛ, вытекающие из данных нескольких экспериментов в рамках модели QGSJet-II.04. Результаты Якутской установки были получены с использованием трех независимых методик [12, 13, 14]. Оценки для установки Ожэ были получены из значений параметра z, рассчитанных в рамках модели QGSJet-II.04 для мюонных данных (Auger MD), станций наземного триггера (Auger SD) и результатов измерений $\langle x_{max} \rangle$ (Auger FD) [11] (см. также Fig. 5). Также приведены данные установок Тунка-133 [15] и TA [16]

В этой статье анализируются данные, полученные за многолетний период работы Якутской комплексной установки ШАЛ (ЯКУ ШАЛ). Проведено сравнение с результатами Оже [11]. Они имеют прямое отношение друг к другу. В обоих экспериментах для регистрации мюонов используются схожие сцинтилляционные детекторы и методики их калибровки по фону космических мюонов. Это позволило напрямую сравнить экспериментальные данные двух установок между собой.

2. Пространственное распределение частиц ШАЛ по данным Якутской установки. В работах [17, 18] были получены отклики наземных и подземных сцинтилляционных детекторов ЯКУ ШАЛ от частиц в ливнях, инициированных КЛ с энергией выше 10¹⁷ эВ. С помощью кода CORSIKA [19] был рассчитан набор искусственных ливней с энергиями в диапазоне $10^{17} - 10^{19.5}$ эВ с логарифмическим шагом $\Delta \lg(E_0/\Im B) = 0.5$ в диапазоне зенитных углов 0° - 60°. Расчеты проведены с использованием моделей взаимодействий при сверхвысоких энергиях QGSJet01 [5], QGSJet-II.04 [6] и EPOS-LHC [7]. Адронные взаимодействия при энергиях ниже 80 ГэВ моделировались с помощью кода FLUKA2011 [20]. В расчетах был задействован механизм статистического прореживания [21] со степенью $E_{\text{thin}} = (10^{-6} - 10^{-5})$ и ограничением по весу для всех компонент w_{\max} = = E₀ · E_{thin}. Для каждого набора входных параметров (E_0, θ) было разыграно по 200 событий, на основе статистики которых строилась средние ФПР (СФПР) отклика детекторов с радиальным логарифмическим разбиением по расстоянию от оси с шагом $\Delta \log(r/M) = 0.04$. На рисунке 3 приведены энергетические зависимости откликов наземных и подземных детекторов Якутской установки от частиц ШАЛ на расстоянии от оси 600 м, полученные с использованием трех моделей адронных взаимодействий. Все плотности приведены к первичной энергии 10¹⁹ эВ путем их умножения на нормировочный коэффициент $10^{19}/E_0$. Средние плотности, найденные расчетным путем, сравнивались с величинами, полученными из экспериментальных данных методом построения СФПР.

2.1. Полученные результаты. Для анализа были отобраны ливни с осями, лежащими в центральном круге установки с радиусом 1 км и погрешностью лоцирования, не превышающей 50 м (табл. 1). Набор отобранных событий был разбит на интервалы (бины) по энергии с шагом $\Delta \lg(E_0/\Im B) = 0.2$. В каждом бине строились СФПР плотностей частиц ШАЛ, измеренных наземными (SD) и подземными детекторами с порогом $\simeq 1$ ГэВ (MD), из которых находились плотности на расстоянии 600 м от оси, $\rho_{\rm SD}(600, 25.8^{\circ})$ и $\rho_{\rm MD}(600, 25.8^{\circ})$. Методика получения СФПР изложена в работе [8]. Точность найденных таким образом плотностей была не хуже 10%. Энергия ливней находилась по формуле:

$$E_0 = (3.76 \pm 0.30) \times 10^{17} \cdot \rho_{\rm SD} (600, 0^{\circ})^{1.02 \pm 0.02} \, [\text{sB}], \ (4)$$

где $\rho_{\rm SD}(600,0^\circ)$ — приведенный к вертикальному направлению ливня классификационный параметр $\rho_{\rm SD}(600,25.8^\circ)$ [22]. При построении СФПР плотности частиц обеих компонент ШАЛ умножались на нормировочный коэффициент $E_{\rm bin}/E_0$, где $E_{\rm bin}$ средняя энергия в бине.

Рис. 3. (Цветной онлайн) Средние отклики наземных (SD) и подземных сцинтилляционных детекторов с порогом $1.0 \times \sec \theta$ ГэВ (MD) на расстоянии 600 м от оси, нормированные на энергию ШАЛ со средним зенитным направлением прихода $\langle \cos \theta \rangle = 0.9$. Линии – результаты расчетов, выполненных в рамках трех моделей адронных взаимодействий для первичных протонов (*p*) и ядер железа (Fe). Символы – средние значения, полученные из экспериментальных данных

На рисунке 3 видно, что измеренные наземными и подземными детекторами отклики частиц ШАЛ оказались меньше ожидаемых от первичных протонов, а плотности мюонов – существенно меньше. Такой результат возможен в силу разных причин. Одна из них может быть связана с оценкой энергии на эксперименте. Первый сомножитель в формуле (4) отражает систематическую ошибку 8 % из-за неопределенности самого метода калибровки Якутской установки [22]. Чтобы понять полученный выше результат допустим, что энергия в ливнях на рис. 3 завы-

654

Таблица 1. Число ливней в выборках СФПР. N_{sh} число событий, вошедших в бин с данной средней энергией

$\langle \lg(E_0/\mathfrak{sB}) \rangle$	17.28	17.48	17.68	17.88	18.09	18.29	18.49	18.70	18.90	19.12
$N_{ m sh}$	6079	6182	4807	2717	1316	600	260	107	60	16

шена на величину разногласия между теорией и экспериментом для наземных детекторов. В случае модели QGSJet01 достаточно уменьшить коэффициент пропорциональности в формуле (4) на $\simeq 10$ %, и на рис. З будет достигнуто согласие измеренных наземными детекторами плотностей с расчетными. Плотности мюонов из-за перенормировки энергии тоже поднимутся вверх на $\simeq 10$ %. В этом случае обе компоненты ШАЛ при $E_0 > 10^{18}$ эВ в пределах ошибок эксперимента согласуются с расчетами. В области энергий ниже 10¹⁸ эВ, по мере уменьшения первичной энергии, плотности мюонов идут все выше и выше. Это можно интерпретировать как изменение состава первичных частиц за счет добавления к протонам определенной доли более тяжелых ядер. На рисунке 1 наблюдается аналогичное поведение состава первичных частиц (утяжеление по мере уменьшения энергии), но на фоне ядер железа. Наземная компонента ШАЛ на рис. 3 показывает такую же тенденцию, но не столь ярко выраженную из-за слабой ее зависимости от мюонов. Модель QGSJet-II.04 дает аналогичный результат при уменьшении коэффициента пропорциональности в формуле (4) на $\simeq 15 \%$, а EPOS-LHC – при уменьшении на $\simeq 20$ %.

На первый взгляд, полученные выше результаты критичны к первичной энергии. Однако в силу того, что СФПР обеих компонент ШАЛ на рис. 3 имеют общую выборку ливней со средней энергией $E_{\rm bin}$, доля мюонов

$$\eta_{600}(E_0) = \frac{\langle \rho_{\rm MD}(600) \rangle / E_{\rm bin}}{\langle \rho_{\rm SD}(600) \rangle / E_{\rm bin}} = \frac{\langle \rho_{\rm MD}(600) \rangle}{\langle \rho_{\rm SD}(600) \rangle} \tag{5}$$

не зависит от энергии. На рисунке 4 показана доля мюонов $\eta_{600}(E_0)$, полученная из данных, приведенных на рис. 3.

Расчеты показывают, что параметр η_{600} передает физический смысл параметра z (1):

$$z = \frac{\ln \eta_{600}^{\exp} - \ln \eta_{600}^{p}}{\ln \eta_{600}^{Fe} - \ln \eta_{600}^{p}}.$$
 (6)

Полученные таким образом значения параметра z для разных интервалов энергии $E_{\rm bin}$ приведены в табл. 2. Все три модели при $E_0 \ge 10^{17.7}$ эВ в пределах ошибок измерений не противоречат гипотезе о чисто протонном составе первичных КЛ ($z \simeq 0$).

Ошибки суммируют как статистику ливней при построении средних ФПР, так и все другие ошиб-

Рис. 4. (Цветной онлайн) Энергетическая зависимость доли мюонов в ШАЛ со средним зенитным направлением $\langle \cos \theta \rangle = 0.9$ на расстоянии 600 м от оси. Символами показаны значения, полученные из экспериментальных данных, линиями – теоретические предсказания, полученные в рамках трех моделей адронных взаимодействий для первичных протонов (*p*) и ядер железа (Fe)

Таблица 2. Значения параметра z, вычисленные из доли мюонов на расстоянии от оси ШАЛ 600 м (рис.,4) с помощью соотношения (6). В колонке z приведены ошибки, учитывающие как систематические, так и статистические неопределенности

$lg(E_{\rm bin}/3B)$	QGSJ6	et01	QGSJet	-11.04	EPOS-LHC		
	z	δz	z	δz	z	δz	
17.28	0.69	0.13	0.58	0.11	0.76	0.12	
17.48	0.41	0.09	0.25	0.09	0.41	0.09	
17.68	0.19	0.12	0.11	0.12	0.21	0.12	
17.88	0.00	0.07	-0.04	0.07	0.04	0.07	
18.09	0.00	0.09	-0.01	0.09	0.02	0.09	
18.29	0.06	0.09	0.00	0.09	0.06	0.09	
18.49	0.01	0.11	-0.06	0.16	-0.06	0.15	
18.70	-0.07	0.11	-0.10	0.17	-0.06	0.14	
18.90	-0.05	0.11	-0.06	0.13	0.07	0.14	
19.12	-0.10	0.22	-0.06	0.29	0.08	0.28	

ки, возникающие при обработки индивидуальных событий (калибровки детекторов, определении направления прихода и координат оси, энергию ШАЛ и др.). Их трудно разделить между собой, да и в этом нет необходимости. Они аккумулируются в средних величинах $\rho_{\rm SD}(600, \theta)$ и $\rho_{\rm MD}(600, \theta)$ (см., например, рис. 3).

655

Параметр *z* является частью простой и важной формулы

$$\langle \ln A \rangle = z \ln 56. \tag{7}$$

для оценки среднего атомного веса А ядра первичной частицы. Его связь с мюонами говорит лишь о том, что мюоны весьма чувствительны к составу КЛ. Но не только они одни. На рисунке 2 показаны оценки состава из других компонент ШАЛ. Сравнение значений параметра z, полученных Обсерваторией Ожэ и ЯКУ ШАЛ в рамках модели QGSJet-II.04, приведено на рис. 5. Данные Ожэ представлены величинами из плотностей частиц, измеренных мюонными детекторами (Auger MD) и наземными детекторами (Auger SD) на расстоянии 1000 м в наклонных ливнях. Они согласуются между собой и указывают на аномально высокие плотности мюонов. Также на рис. 5 приведены значения, полученные по данным измерений $\langle x_{\rm max} \rangle$ (Auger FD). Эти данные были взяты из рис. 13b работы [11]. Они не противоречат ожидаемому в рамках модели QGSJet-II.04 легкому составу первичных частиц, близкому к протонному. Значения параметра з Якутской установки приведены в четвертой и пятой колонках таблицы 2. На рисунке 2 показаны значения $\langle \ln A \rangle$, полученные из изображенных на рис. 5 данных Ожэ (Auger MD), (Auger SD) и (Auger FD), с помощью формулы (7).

3. Сравнение данных двух установок и обсуждение. В работе [11] коллаборация Ожэ для регистрации мюонной компоненты ШАЛ использовала подземные сцинтилляционные детекторы с энергетическим порогом $1.0 \times \sec \theta \Gamma$ эВ, аналогично Якутскому эксперименту. Обе установки калибруют свои мюонные детекторы по мюонному фону. Это позволяет напрямую сравнить экспериментальные данные двух установок между собой. Для этого по СФПР мюонной компоненты в отобранных событиях были найдены плотности мюонов на расстоянии от оси 450 м $(\rho_{\rm MD}(450, 25.8^{\circ}))$. С помощью соотношений (2) и (3) они были приведены к величине $\rho_{\rm MD}(450, 35^\circ)$, как в измерениях на установке Ожэ. Найденные таким образом плотности показаны на рис. 6, который представляет собой рис. 1 с наложенными данными Якутской установки. При $E_0 \ge 8 \times 10^{17}$ эВ они согласуются с результатами расчетов, выполненных для детекторов установки Ожэ в рамках модели QGSJet-II.04 в случае первичных протонов, а при меньших энергиях указывают на смешанный состав первичных частиц.

Проблема аномально большого содержания мюонов в ШАЛ сверхвысоких энергий (см. например, [1–4, 11, 13]), о которой в последнее время много говорят, не является чисто мюонной. Во многих экспе-

Рис. 5. (Цветной онлайн) Энергетические зависимости параметра z согласно разным видам измерений на Якутской установке и Обсерватории Ожэ, полученные в рамках модели QGSJet-II.04. Для Ожэ показаны значения по данным прямой регистрацией мюонной компоненты ШАЛ (Auger MD), из анализа плотностей частиц на расстоянии 1000 м от оси, измеренной наземными детекторами (Auger SD) и оценки на основе прямых наблюдений глубины максимума развития ШАЛ оптическим методом (Auger FD). Серой полосой обозначены систематические погрешности оптических измерений Ожэ. Данные Якутской установки приведены в табл. 2 (Yakutsk MD)

риментах, где рассматриваются мюоны, они фактически нормируются на первичную энергию. В паре "мюоны-первичная энергия" последняя является самым слабым звеном. Это размерная величина: плотность мюонов, деленная на энергию [м⁻²/эВ]. Значение энергии прямо влияет на выводы (много или мало мюонов) по сравнению с другими экспериментами и модельными расчетами. Хотя число мюонов может быть нормальным.

В работе [22] сравниваются первичные энергетические спектры КЛ, полученные коллаборацией Ожэ и на Якутской установке. Согласие обоих спектров здесь вполне возможно, если, например, увеличить первичную энергию в эксперименте Ожэ в 1.25 раза. Тогда все плотности на рис. 6 после перенормировки данных Ожэ опустятся вниз на 25 % (темные кружки). Полученные таким образом плотности мюонов могут вполне быть увязаны с тяжелым составом первичных частиц. В этом случае загадка мюонов (расхождение теории с экспериментом) теряет всю свою остроту и входит в русло конструктивного поиска причин остающихся здесь разногласий.

4. Заключение. Доля мюонов, полученная при совместном анализе плотностей $\langle \rho_{\rm MD}(600, 25.8^\circ) \rangle$ и

Рис. 6. (Цветной онлайн) Сравнение энергетических зависимостей параметра $\rho_{\rm MD}(450,35^\circ)$, полученных коллаборацией Ожэ (работа [11], рис. 11) и на Якутской установке. Средние плотности мюонов, полученные в якутском эксперименте, были приведены к зенитному углу $\theta = 35^\circ$. Линиями обозначены результаты расчетов, выполненных для мюонных детекторов установки Ожэ в рамках моделей адронных взаимодействий QGSJet-II.04 и EPOS-LHC для первичных протонов (p) и ядер железа (Fe). Символами обозначены экспериментальные данные. Темные кружки – перенормированные плотности мюонов после увеличения первичной энергии в эксперименте Ожэ в 1.25 раза

 $\langle \rho_{\rm SD}(600,25.8^\circ) \rangle$ в общих выборках ливней с энергиями от 2×10^{17} до 2×10^{19} эВ, согласуются с ожидаемыми значениями, полученными в рамках моделей адронных взаимодействий QGSJet01, QGSJet-II.04 и EPOS-LHC (см. рис. 4). Сравнение этих данных с результатами коллаборации Ожэ [11] показало, что они явно противоречат друг другу (см. рис. 5 и 6). Кроме того, при более высоких энергиях результаты Якутской установки выглядят как "мюонный дефицит" по сравнению с моделями, особенно с EPOS-LHC (рис. 6), в противоположность обсуждаемом другими экспериментами "мюонному избытку". При $E_0 \ge 8 \times 10^{17}$
эВ вполне допустима гипотеза о чисто протонном составе космических лучей. В области более низких энергий состав первичных частиц становится, по-видимому, смешанным, с добавкой более тяжелых ядер. Это согласуется с нашими более ранними оценками [12, 13, 24, 25]. В работе [11] обращает на себя внимание внутреннее противоречие результатов, которое, на наш взгляд, может быть связанно с какими-то особенностями эксперимента Ожэ.

Очевидно, что вопрос измерений мюонной компоненты ШАЛ требует дальнейшего подробного изучения.

Работа выполнена в рамках государственного задания (номер госрегистрации 122011800084-7) с использованием данных, полученных на Уникальной научной установке "Якутская комплексная установка широких атмосферных ливней (ЯКУ ШАЛ) им. Д. Д. Красильникова" (https://ckp-rf.ru/catalog/usu/73611/).

Авторы выражают благодарность сотрудникам Обособленного структурного подразделения ИКФИА СО РАН ЯКУ ШАЛ.

- T. Abu-Zayyad, K. Belov, D.J. Bird et al. (HiRes-MIA Collaboration), Phys. Rev. Lett. 85 4276 (2000); doi:10.1103/PhysRevLett.84.4276; arXiv:astroph/9911144.
- H.P. Dembinski, J.C. Arteaga-Velázquez, L. Cazon et al. (for ES-MSU, IceCube, KASCADE-Grande, NEVOD-DECOR, Pierre Auger Observatory, SUGAR, Telescope Array and Yakutsk EAS Array collaborations); EPJ Web Conf. 210, 02004 (2019); doi:10.1051/epjconf/201921002004.
- A. Aab, P. Abreu, M. Aglietta et al. (The Pierre Auger Collaboration), Phys. Rev. Lett. **117**, 192001 (2016); doi:10.1103/PhysRevLett.117.192001; arXiv:1610.08509 [hep-ex].
- R. U. Abbasi, M. Abe, T. Abu-Zayyad et al. (Telescope Array Collaboration), Phys. Rev. D 98, 022002 (2018); doi:10.1103/PhysRevD.98.022002; arXiv:1804.03877 [astro-ph.HE].
- N.N. Kalmykov, S.S. Ostapchenko, and A.I. Pavlov, Nucl. Phys. B - Proc. Suppl. 52, 17 (1997); doi:10.1016/S0920-5632(96)00846-8.
- S. Ostapchenko, Phys. Rev. D 83, 014018 (2011); doi:10.1103/PhysRevD.83.014018; arXiv:1010.1869 [hep-ph].
- T. Pierog, Iu. Karpenko, J. M. Katzy, E. Yatsenko, and K. Werner, Phys. Rev. C 92, 034906 (2015); doi:10.1103/PhysRevC.92.034906; arXiv:1306.0121 [hep-ph].
- A.V. Glushkov, K.G. Lebedev, and A.V. Saburov, Bull. Russ. Acad. Sci.: Physics 87, in press (2023); arXiv:2301.12268 [astro-ph.HE].
- А.В. Глушков, К.Г. Лебедев, А.В. Сабуров, ЯФ 86, 379 (2023); arXiv:2304.08561 [astro-ph.HE].
- А.В. Глушков, К.Г. Лебедев, А.В. Сабуров, Письма в ЖЭТФ 117, 254 (2023).
- A. Aab, P. Abreu, M. Aglietta et al. (The Pierre Auger Collaboration), Eur. Phys. J. C 80, 751 (2020); doi:10.1140/epjc/s10052-020-8055-y.
- А.В. Глушков, А.В. Сабуров, Письма в ЖЭТФ 109, 579 (2019) [A.V. Glushkov and A.V. Saburov, JETP Lett. 109, 559 (2019)]; doi:10.1134/S0370274X19090017.
- А.В. Глушков, М.И. Правдин, А.В. Сабуров, Письма в АЖ 44, 643 (2018) [М. І. Pravdin, А. V. Glushkov,

and A.V. Saburov, Astronomy Lett. ${\bf 44},\ 588\ (2018)];$ doi:10.1134/S0320010818100029.

- S. P. Knurenko and I.S. Petrov, Adv. Space Res. 64, 2570 (2019); doi:10.1016/j.asr.2019.07.019; arXiv:1908.01508 [astro-ph.HE].
- V. V. Prosin, S. F. Berezhnev, N.M. Budnev et al. (Tunka Collaboration), EPJ Conf. **121**, 03004 (2016); doi:10.1051/epjconf/201612103004.
- R. U. Abbasi, M. Abe, T. Abu-Zayyad et al. (Telescope Array Collaboration), APJ 858, 76 (2019); doi:10.3847/1538-4357/aabad7; arXiv:1801.09784 [astro-ph.HE].
- A. V. Glushkov, M. I. Pravdin, and A. Sabourov, Phys. Rev. D 90, 012005 (2014); doi:10.1103/PhysRevD.90.012005; arXiv:1408.6302 [astro-ph.HE].
- А. В. Сабуров, Пространственное распределение частиц ШАЛ с энергией выше 10¹⁷ эВ по данным Якутской установки. Дисс...канд. наук., ИЯИ РАН, М. (2018), 146 с.
- 19. D. Heck, J. Knapp, J.N. Capdevielle, G. Schatz, and T. Thouw, CORSIKA: A Monte Carlo Code

to Simulate Extensive Air Showers; FZKA 6019, Forschungszentrum Karlsruhe GmbH, Karlsruhe (1988).

- A. Ferrari, P. R. Sala, A. Fassò, and J. Ranft, *FLUKA: A multi-particle transport code (program* version 2005), CERN-2005-010, CERN, Geneva (2005); doi:10.5170/CERN-2005-010.
- W. R. Nelson, H. Hirayama, and D. W. O. Rogers, *The EGS4 code system*, SLAC-R-265, Stanford: SLAC (1985).
- А.В. Глушков, М.И. Правдин, А.В. Сабуров, ЯФ
 81, 535 (2018) [A.V. Glushkov, М.I. Pravdin, and A.V. Saburov, Phys. Atom. Nucl. 81, 575 (2018)]; doi:10.1134/S0044002718040049; arXiv:2301.09654 [astro-ph.HE].
- B. Keilhauer, J. Bluemer, R. Engel, H.O. Klages, and M. Risse, Astropart. Phys. 22, 249 (2004); doi:10.1016/j.astropart.phys.2004.08.004; arXiv:astro-ph/0405048.
- А.В. Глушков, А.В. Сабуров, Письма в ЖЭТФ 100, 793 (2014) [A.V. Glushkov and A.V. Saburov, JETP Lett. 100, 695 (2015)]; doi:10.1134/S0021364014230052.
- 25. А.В. Глушков, А.В. Сабуров, ЖЭТФ **146**, 968 (2014).