Увеличение эффективности изотопно-селективной лазерной ИК многофотонной диссоциации молекул ¹¹BCl₃ в смеси с сенсибилизатором и акцептором радикалов SF₆

Г. Н. Макаров¹⁾, А. Н. Петин

Институт спектроскопии РАН, 108840 Троицк, Москва, Россия

Поступила в редакцию 29 марта 2022 г. После переработки 11 апреля 2023 г. Принята к публикации 11 апреля 2023 г.

Обнаружено сильное увеличение эффективности изотопно-селективной лазерной ИК многофотонной диссоциации (МФД) молекул¹¹BCl₃ в естественной смеси с ¹⁰BCl₃ излучением импульсного CO₂лазера в случае их облучения с сенсибилизатором – молекулами SF₆, которые являются одновременно и акцепторами радикалов – атомов Cl, образующихся при диссоциации молекул BCl₃. Наблюдалось существенное (в несколько раз) увеличение выхода и селективности диссоциации молекул ¹¹BCl₃, а также значительное уменьшение пороговой плотности энергии диссоциации молекул в случае их облучения с SF₆ по сравнению со случаем облучения без SF₆. Это открывает возможность реализации одночастотной изотопно-селективной диссоциации молекул ¹¹BCl₃ несфокусированным лазерным излучением при умеренной ($\approx 3-5$ Дж/см²) плотности энергии возбуждения, что важно и актуально в плане практической реализации лазерного метода для разделения изотопов бора.

DOI: 10.31857/S123456782310004X, EDN: clczlz

1. Введение. В последнее время возрос интерес к лазерному разделению изотопов бора [1-4]. Это связано с их применением в важных отраслях промышленности, в медицине [5-7], а также в космических экспериментах [8]. В природе бор содержится в виде двух изотопных модификаций – ¹⁰В (около 19.8 %) и ¹¹В (около 80.2 %) [5,6]. ¹⁰В имеет очень большое сечение захвата тепловых нейтронов, около 3837 барн [9] (1 барн равен 10⁻²⁴ см²). Для большинства нуклидов это сечение близко к единицам или долям барна. Поэтому материалы, обогащенные изотопом ¹⁰В (борная кислота, карбид бора и другие соединения) широко применяются в атомной энергетике. Изотоп ¹¹В используется в электронной промышленности как легирующий компонент при производстве полупроводниковых изделий [6,7]. В связи с этим разработка методов и эффективной технологии разделения изотопов бора являются важной и актуальной задачей.

Наиболее эффективным методом молекулярного лазерного разделения изотопов сегодня считается метод селективной инфракрасной (ИК) многофотонной диссоциации молекул излучением импульснопериодического СО₂-лазера [10, 11]. Поэтому при реализации технологического процесса разделения изотопов бора целесообразно использовать именно этот метод. Он успешно применялся ранее в технологии лазерного разделения изотопов углерода на практике [12, 13].

Для молекулярного лазерного разделения изотопов с использованием имеющихся эффективных импульсных CO₂-лазеров необходимо, чтобы полосы ИК поглощения выбранных молекул попадали в диапазон генерации CO₂-лазера и обладали сравнительно большим (≥ 5–10 см⁻¹) изотопическим сдвигом. Кроме того, желательно, чтобы эффективная изотопно-селективная диссоциация выбранных молекул осуществлялась при невысокой плотности энергии лазерного излучения.

Одним из наиболее подходящих исходных соединений для лазерного разделения изотопов бора является газообразное химическое соединение BCl₃. Полосы ИК поглощения колебаний ν_3 молекул ¹¹BCl₃ ($\approx 954.2 \text{ см}^{-1}$) и ¹⁰BCl₃ ($\approx 993.7 \text{ см}^{-1}$) [14] попадают в резонанс соответственно с Р- и R-ветвями 10.6 мкм полосы генерации CO₂-лазера. Изотопический сдвиг между указанными полосами ИК поглощения молекул ¹¹BCl₃ и ¹⁰BCl₃ составляет $\Delta \nu_{is} \approx 39.5 \text{ см}^{-1}$ [14]. Именно с использованием BCl₃ была впервые продемонстрирована изотопно-селективная лазерная ИК МФД молекул [15]. В большом числе последующих работ [16–26] была довольно детально изучена изотопно-селективная диссоциация молекул BCl₃ в поле излучения мощного импульсного CO₂-лазера с

 $^{^{1)}}$ e-mail: gmakarov@isan.troitsk.ru

использованием разных акцепторов радикалов (H₂, NO, H₂S, D₂S, HBr и др.) для подавления процесса ассоциации образующихся при диссоциации молекул BCl₃ радикалов BCl₂ и атомов Cl [16].

Установлено, что в плане получения сравнительно высоких значений селективности и выхода диссоциации молекул BCl_3 довольно хорошим акцептором радикалов является кислород [17–19, 22]. В случае использования кислорода конечными продуктами ИК многофотонной диссоциации молекул BCl_3 являются B_2O_3 и Cl_2 [17]. Твердое соединение B_2O_3 в виде пленки осаждается на стенках и окнах кюветы, в которой облучается газ. Показано [17, 23], что акцепторы радикалов практически не приводят к сколько-нибудь значительному увеличению селективности и выхода диссоциации BCl_3 , а также уменьшению порога диссоциации молекул.

В ходе выполненных ранее исследований установлено также, что для эффективной ИК многофотонной диссоциации молекул BCl₃ требуются довольно высокие плотности энергии возбуждающего лазерного излучения ($\Phi \geq 20 \, \text{Дж/см}^2$) [23, 24], что связано, главным образом, с большой энергией связи молекулы ($\approx 110 \, \text{ккал/моль}$ [27]). Поэтому ИК диссоциация молекул возможна только сфокусированными лазерными пучками. Вместе с тем использование сфокусированных лазерных пучков приводит, как правило, к уменьшению изотопической селективности процесса диссоциации молекул [10, 11].

В случае возбуждения молекул BCl₃ одночастотным лазерным излучением селективности диссоциации молекул ¹⁰BCl₃ и ¹¹BCl₃ составляли соответственно $\alpha(^{10}\text{B}/^{11}\text{B})$ < 8 и $\alpha(^{11}\text{B}/^{10}\text{B})$ < 2.5 [22-24]. При этом выходы диссоциации молекул (в пересчете на облучаемый лазером объем газа в кювете) были небольшими ($\beta_{10} \approx \beta_{11} \leq (2-8) \times 10^{-4}$ [24]). Значительно более высокие селективности и выходы диссоциации молекул BCl₃ ($\alpha(^{10}B/^{11}B) \ge 8$; $\beta_{10} \geq 10\%; \beta_{11} \geq 20\%$) наблюдались в случае их возбуждения двухчастотным ИК лазерным излучением [28, 29]. При этом существенно уменьшался также порог диссоциации молекул (до значений Φ_1 и $\Phi_2 \geq 2-3\,\mathrm{Дж/cm^2}$). Однако реализация технологического процесса лазерного разделения изотопов бора с использованием двухчастотной диссоциации молекул представляется весьма сложной на практике.

В данной работе нами обнаружено, что в случае использования при изотопно-селективной лазерной ИК многофотонной диссоциации BCl_3 в качестве сенсибилизатора и акцептора радикалов молекул SF_6 происходит существенное увеличение эффективности диссоциации молекул ¹¹ BCl_3 . Это пред-

ставляется весьма важным и актуальным при реализации технологического процесса лазерного разделения изотопов бора.

2. Эксперимент. Экспериментальная установка (рис. 1) включала в себя перестраиваемый по час-

Рис. 1. (Цветной онлайн) Схема экспериментальной установки. 1– зеркало; 2– длиннофокусная линза; 3– ослабители лазерного излучения; 4– делительная пластинка; 5– приемник излучения; 6– кювета с облучаемым газом; 7– поглотитель излучения

тоте импульсный СО2-лазер, формирующую оптику, газовую кювету из нержавеющей стали для облучения исследуемых молекул длиной 112 мм, объемом 24.2 см³, с окнами из BaF₂, калориметрический (ТПИ-2-5) и пироэлектрический (SensorPhysics Model 510) приемники излучения для измерения падающей и прошедшей через кювету энергии. Импульс излучения СО₂-лазера состоял из переднего пика длительностью около 80 нс по полувысоте и хвостовой части длительностью ≈ 750 нс, в которой содержалась примерно третья часть энергии лазерного импульса. Коллимация лазерного пучка в облучаемую кювету производилась длиннофокусной (f = = 1 м) линзой. Энергия излучения лазера в импульсе составляла от 0.7 до 3.0Дж, в зависимости от частоты генерации и парциального состава лазерной смеси. Частота излучения лазера перестраивалась в диапазоне 9.2–10.8 мкм. Для привязки частоты линий излучения СО₂-лазера использовался оптикоакустический приемник с реперным газом NH₃. Поперечное распределение плотности энергии и площадь сечения лазерного пучка определялись с помощью микрозонда путем сканирования его поперек лазерного пучка во взаимно-перпендикулярных направлениях на входе и на выходе из кюветы.

3. Метод. Селективная по изотопам бора ИК многофотонная диссоциация молекул BCl₃ проводилась при настройке частоты излучения CO₂-лазера на линию 10P32 (частота 932.96 см⁻¹), которая совпадает с длинноволновым крылом полосы поглощения колебания ν_3 молекул ¹¹BCl₃ (≈ 954.2 см⁻¹ [14]). Полоса поглощения колебания ν_3 молекул SF₆

 $(\approx 948 \text{ см}^{-1} [30])$ примерно на 6.2 см⁻¹ смещена в низкочастотную сторону от центра полосы поглощения молекул ¹¹BCl₃ (рис. 2а-с). При лазерном ИК многофотонном возбуждении полосы поглошения как молекул ¹¹BCl₃, так и молекул SF₆ смещаются из-за ангармонизма колебаний в красную сторону (в сторону частоты излучения лазера) и приходят в оптимальный резонанс с лазерным полем [31-34]. Происходит эффективное ИК многофотонное возбуждение обоих типов молекул, в том числе молекул SF₆, поглощенная энергия от которых передается молекулам ¹¹BCl₃. Поскольку полосы поглощения молекул SF₆ и ¹¹BCl₃ практически совпадают, процесс колебательно-колебательного V-V обмена энергией между ними имеет резонансный характер и происходит очень эффективно [35, 36]. Это и приводит к увеличению выхода диссоциации молекул ¹¹BCl₃. Отметим, что поскольку энергия диссоциации молекул $\mathrm{SF}_6~(pprox 92\,\mathrm{ккал/моль}~[37])$ меньше энергии диссоциации молекул BCl₃, при высоких плотностях энергии возбуждения имеет место также диссоциация и молекул SF₆.

Фотохимическая реакция при лазерной ИК многофотонной диссоциации молекул ¹¹BCl₃ протекает по схеме

$${}^{11}\mathrm{BCl}_3 + nh\nu \to {}^{11}\mathrm{BCl}_2 + \mathrm{Cl},\tag{1}$$

где *nhv* обозначает количество поглощенных лазерных ИК фотонов.

В результате облучения газа продукты диссоциации обогащались изотопом ¹¹В, а остаточный газ BCl₃ обогащался изотопом ¹⁰В. Выходы диссоциации, которые представляют собой доли распавшихся в облучаемом объеме молекул за один лазерный импульс, определялись по изменениям в ИК спектрах поглощения для каждой из изотопных компонент BCl₃.

Спектры поглощения измерялись с помощью ИК фурье-спектрометра ФТ-801. Выходы диссоциации β_{11} и β_{10} вычислялись по парциальному давлению каждой компоненты $^i\mathrm{BCl}_3$ (i=10,11) до $(p_{i,0})$ и после (p_i) облучения лазерными импульсами с использованием соотношения

$$\beta_i = \Gamma^{-1} [1 - (p_i/p_{i,0})^{1/N}], \qquad (2)$$

где $\Gamma \approx 0.083$ — отношение облучаемого объема $(V_{\rm irr} \approx 2.0 \,{\rm cm}^3)$ к объему кюветы $(V_{\rm cell} = 24.2 \,{\rm cm}^3)$, N — число импульсов облучения. Измерения интенсивности полосы поглощения молекул ¹¹BCl₃ до и после облучения проводились на частоте $\approx 954.2 \,{\rm cm}^{-1}$ (примерно в максимуме полосы поглощения ¹¹BCl₃), на которой практически никакого вклада от погло-

Рис. 2. (Цветной онлайн) (а) – Полосы ИК поглощения колебаний ν_3 молекул ¹¹BCl₃ и ¹⁰BCl₃. Давление BCl₃ в кювете 0.35 торр, длина кюветы 11.2 см. (b) – Полоса ИК поглощения колебания ν_3 молекул SF₆. Давление SF₆ в кювете 0.15 торр. (c) – Полосы ИК поглощения колебаний ν_3 молекул ¹¹BCl₃, ¹⁰BCl₃ и SF₆. Давление BCl₃ в кювете 0.35 торр, SF₆ – 0.15 торр

щения молекул SF₆ при используемых в эксперименте давлениях не было (см. рис. 2b). Селективность α ⁽¹¹B/¹⁰B) определялась как отношение выходов диссоциации молекул ¹¹BCl₃ и ¹⁰BCl₃

$$\alpha(^{11}\mathrm{B}/^{10}\mathrm{B}) = \beta_{11}/\beta_{10}.$$
 (3)

4. Результаты и их обсуждение. В экспериментах измерялись основные параметры селективной лазерной ИК многофотонной диссоциации молекул $BCl_3 - выходы диссоциации молекул <math>^{11}BCl_3 (\beta_{11})$ и $^{10}BCl_3 (\beta_{10})$, а также селективность диссоциации молекул $^{11}BCl_3$ по отношению к молекулам $^{10}BCl_3 (\alpha^{(11}B/^{10}B))$. Получены зависимости этих параметров от давлений облучаемых газов BCl_3 и SF_6 , а также от плотности энергии возбуждающего лазерного излучения.

На рисунке 3 показаны полосы ИК поглощения колебаний ν_3 молекул ¹¹BCl₃, ¹⁰BCl₃ и молекул SF₆ до облучения (1) и после облучения лазером (2). Показаны также полосы ИК поглощения колебаний $\nu_1 (\approx 851.4 \text{ cm}^{-1})$ и $\nu_8 (\approx 909.1 \text{ cm}^{-1})$ образующегося продукта SF₅Cl [38]. Исходное давление BCl₃ в кювете 0.35 торр, SF₆ – 0.15 торр. Плотность энергии возбуждающего лазерного излучения 1.91 Дж/см². Число импульсов облучения N = 1800. Кроме SF₅Cl, в образующихся продуктах нами были обнаружены также (спектры ИК поглощения других продуктов на рис. 3 не показаны) молекулы BCl₂F, BClF₂ и BF₃.

Рис. 3. (Цветной онлайн) Полосы ИК поглощения колебаний ν_3 молекул ¹¹BCl₃, ¹⁰BCl₃ и молекул SF₆ до облучения (1) и после облучения (2) лазером. Показаны также полосы ИК поглощения образующегося продукта SF₅Cl с центрами полос на частотах 851.4 см⁻¹ (колебание ν_1) и 909. см⁻¹ (колебание ν_8) [38]. Исходное давление BCl₃ в кювете 0.35 торр, SF₆ – 0.15 торр. Плотность энергии возбуждающего лазерного излучения 1.91 Дж/см². Число импульсов облучения N = 1800

На рисунке 4a, b показаны зависимости выходов диссоциации молекул $^{11}BCl_3 \beta_{11}$ и $^{10}BCl_3 \beta_{10}$ (a), a также селективности диссоциации молекул $^{11}BCl_3$ по отношению к молекулам $^{10}BCl_3 \alpha(^{11}B/^{10}B)$ (b) от

Письма в ЖЭТФ том 117 вып. 9-10 2023

Рис. 4. (Цветной онлайн) (a), (b) – Зависимости выходов диссоциации β_{11} (кривая 1) и β_{10} (кривая 2) (a), а также селективности диссоциации $\alpha(^{11}B/^{10}B)$ (b) от давления SF₆ при фиксированном давлении BCl₃, равном 0.35 торр, и плотности энергии возбуждающего излучения 2.1 Дж/см²

давления SF₆ в диапазоне 0.05–2.0 торр при фиксированном давлении BCl₃, равном 0.35 торр, и плотности энергии возбуждающего излучения $\Phi \approx 2.1 \, \text{Дж/см}^2$. Видно, что в исследуемом диапазоне давлений SF₆ выходы диссоциации молекул ¹¹BCl₃ и ¹⁰BCl₃ растут соответственно от значений $\beta_{11} \approx 4.5 \times 10^{-4}$ и $\beta_{10} \approx 3.4 \times 10^{-4}$ при облучении молекул BCl₃ без SF₆ до значений $\beta_{11} \approx 8.5 \times 10^{-2}$ и $\beta_{10} \approx 7.2 \times 10^{-2}$ в случае облучения молекул BCl₃ с SF₆ при давлении 2.0 торр.

Таким образом, при облучении молекул BCl_3 с SF_6 наблюдается увеличение выходов диссоциации молекул BCl_3 более чем на два порядка. Отметим резкое увеличение (более чем на порядок) выхода диссоциации молекул $^{11}BCl_3$ при добавлении все-

го лишь 0.1 торр SF₆. Это означает также, что за счет использования SF₆ значительно уменьшается пороговая плотность энергии диссоциации молекул ¹¹BCl₃. Рост выходов диссоциации молекул ¹¹BCl₃ и ¹⁰BCl₃ с увеличением давления SF₆ в области $\approx 0.5-$ 2.0 торр носит монотонный характер.

Селективность диссоциации молекул ¹¹BCl₃ по отношению к молекулам ¹⁰BCl₃ резко растет от значения $\alpha(^{11}B/^{10}B) \approx 1.3$ в случае облучения молекул без SF₆ до величины $\alpha(^{11}\text{B}/^{10}\text{B}) \approx 8.0$ в случае облучения молекул с ${\rm SF}_6$ при давлении pprox 0.15-0.2 торр. При дальнейшем увеличении давления SF₆ до ≈ 0.4 торр селективность быстро падает до значения $\alpha(^{11}B/^{10}B) \approx 3.0$ и далее медленно уменьшается до величины $\alpha(^{11}\text{B}/^{10}\text{B}) \approx 1.0$ при давлении SF₆ ≥ 1.5 торр. Таким образом, в случае облучения BCl₃ при давлении 0.35 торр с SF₆ максимальные значения селективности диссоциации $\alpha(^{11}B/^{10}B)$ достигаются при давлении SF₆ в диапазоне 0.15-0.25 торр. При этом селективность $\alpha(^{11}B/^{10}B)$ в случае облучения с SF₆ более чем в 3–5 раз больше, чем при облучении молекул BCl₃ без SF₆.

На рисунке 5 приведены зависимости выходов диссоциации молекул $^{11}BCl_3$ и $^{10}BCl_3$, а также селективности диссоциации $\alpha(^{11}B/^{10}B)$ от плотности энергии возбуждающего лазерного излучения в диапазоне от ≈ 1.8 до $3.4~\rm Дж/cm^2$. Облучалась смесь молекул 0.35торр $BCl_3+0.1$ торр SF_6 . Видно, что выходы диссоциации молекул BCl_3 быстро растут с увеличением плотности энергии возбуждения. Столь быстрый рост выходов диссоциации объясняется тем, что вследствие большой энергии связи молекул BCl_3 при указанных плотностях энергии лазерного излучения процесс ИК диссоциации носит надпороговый характер и сравнительно далек от насыщения.

Селективность диссоциации молекул $^{11}BCl_3$ $\alpha(^{11}B/^{10}B)$, наоборот, резко падает с увеличением плотности энергии возбуждения. Вместе с тем при всех исследуемых плотностях энергии возбуждения селективность диссоциации с использованием SF₆ значительно (в 2–5 раз) больше, чем без SF₆. Наблюдаемое поведение зависимостей выходов диссоциации и селективности от плотности энергии возбуждающего излучения характерно для процесса изотопно-селективной лазерной ИК многофотонной диссоциации большого числа молекул [10, 11]

5. Заключение. Обнаружено существенное увеличение эффективности изотопно-селективной лазерной ИК МФД молекул ¹¹BCl₃ в естественной смеси с ¹⁰BCl₃ в случае их облучения с резонансно поглощающим излучение лазера сенсибилизатором и акцептором радикалов SF₆. Показано, что при об-

Рис. 5. (Цветной онлайн) (a), (b) – Зависимости выходов диссоциации β_{11} (кривая 1) и β_{10} (кривая 2) (a), а также селективности диссоциации $\alpha(^{11}B/^{10}B)$ (b) от плотности энергии возбуждающего лазерного излучения. Давление газа в кювете: 0.35 торр BCl₃ + 0.1 торр SF₆

лучении BCl₃ в смеси с SF₆ сильно увеличиваются как выход диссоциации молекул ¹¹BCl₃ (на 1–2 порядка), так и селективность диссоциации (в 2–5 раз), а также значительно (примерно на порядок) уменьшается пороговая плотность энергии диссоциации по сравнению со случаем облучения BCl₃ без SF₆. Это открывает возможность реализации одночастотной изотопно-селективной лазерной ИК диссоциации молекул ¹¹BCl₃ в несфокусированных лазерных пучках при умеренной (≤ 4 –5 Дж/см²) плотности энергии возбуждения.

Полученные результаты важны и актуальны в плане применения описанного метода для разработки лазерной технологии разделения изотопов бора, поскольку становится возможным получать высокообогащенный изотопом ¹⁰В молекулярный газ BCl₃ за счет диссоциации молекул ¹¹BCl₃ в природной смеси с ¹⁰BCl₃. Авторы выражают благодарность Е. А. Рябову за полезные обсуждения.

Работа выполнена в рамках проекта госзадания.

- J. Guo, Y.-J. Li, J.-P. Ma, X. Tang, X.-S. Liu, Chem. Phys. Lett. 773, 138572 (2021).
- A. K. A. Lyakhov and A. N. Pechen, Appl. Phys. B 126(8), 141 (2020).
- A. Aljubouri, F. H. Hamza, and H. H. Mohammed, Engineering and Technology Journal 34(5), Part (B) Scientific, 157 (2016).
- K. A. Lyakhov, H. J. Lee, and A. N. Pechen, Separat. Purificat. Technol. 176, 402 (2017).
- 5. С. П. Потапов, Атомная энергия 10, 244 (1961).
- J. M. Blum and S. Martean, Energie nucleaire 14(1), 33 (1972).
- А.Ф. Чабак, А.С. Полевой, Изотопы в реакторостроении, в кн. Изотопы: свойства, получение, применение, под ред. В.Ю. Баранова, Физматлит, М. (2005), т. II, с. 192.
- Э. А. Богомолов, Г.И. Васильев, В. Менн, Известия РАН. Серия физическая 85(4), 466 (2021).
- A. A. Palko and J. S. Drury, Adv. Chem. Ser. 89, 40 (1969).
- V. N. Bagratashvili, V. S. Letokhov, A. A. Makarov, and E. A. Ryabov, *Multiple Photon Infrared Laser Photophysics and Photochemistry*, Harwood Acad. Publ. (1985).
- Multiple-Photon Excitation and Dissociation of Polyatomic Molecules, ed. by C. D. Cantrell, Topics in Current Physics, Springer-Verlag, Berlin (1986), v. 35.
- В.С. Летохов, Е.А. Рябов, Многофотонная изотопически-селективная ИК диссоциация молекул, в кн. Изотопы: свойства, получение, применение, под ред. В.Ю. Баранова, Физматлит, М. (2005), т. I, с. 445.
- V. Yu. Baranov, A. P. Dyadkin, D. D. Malynta, V. A. Kuzmenko, S. V. Pigulsky, V. S. Letokhov, V. B. Laptev, E. A. Ryabov, I. V. Yarovoi, V. B. Zarin, and A. S. Podorashy, *Production of carbon isotopes by laser separation*, Proc. SPIE (Progress in Research and Development of High-Power Industrial CO₂-lasers), 4165, 314 (2000).
- D. F. Wolfe and G. L. Humphrey, J. Mol. Struct. 3, 293 (1969).
- Р.В. Амбарцумян, В.С. Летохов, Е.А. Рябов, Н.В. Чекалин, Письма в ЖЭТФ 20, 597 (1974).

- J. L. Lyman and S. D. Rockwood, J. Appl. Phys. 47(2), 595 (1975).
- Р.В. Амбарцумян, Ю.А. Горохов, В.С. Летохов, Г.Н. Макаров, Е.А. Рябов, Н.В. Чекалин, Квантовая электроника 2, 2197 (1975).
- Р.В. Амбарцумян, В.С. Должиков, В.С. Летохов, Е.А. Рябов, Н.В. Чекалин, ЖЭТФ **69**, 72 (1975).
- Р.В. Амбарцумян, Ю.А. Горохов, В.С. Летохов, Г.Н. Макаров, Е.А. Рябов, Н.В. Чекалин, Квантовая электроника 3, 802 (1976).
- C. D. Rockwood, J. W. Hudson, Chem. Phys. Lett. 34, 542 (1975).
- C. T. Lin, T. D. Z. Atvars, and F. B. T. Pessine, J. Appl. Phys. 48, 1720 (1977).
- 22. Ю. Р. Коломийский, Е. А. Рябов, Квантовая электроника 5, 651 (1978).
- Y. Ishikawa, O. Kurihara, R. Nakane, and S. Arai, Chem. Phys. 52, 143 (1980).
- Z. Peiran, Z. Wensen, and Z. Yuying, Chinese J. Lasers 8(10), 20 (1981).
- K. Takeuchi, O. Kurihara, and R. Nakane, Chem. Phys. 54, 383 (1981).
- K.-H. Lee, H. Takeo, S. Kondo, C. Matsumura, Bull. Chem. Soc. Jpn. 58, 1772 (1985).
- В. Н. Кондратьев (ред.), Энергии разрыва химических связей, потенциалы ионизации и сродство к электрону, Наука, М. (1974).
- В.Б. Лаптев, Е.А. Рябов, Квантовая электроника 13, 2368 (1986).
- 29. В.Б. Лаптев, Е.А. Рябов, Химическая физика 7, 165 (1988).
- R.S. McDowell, B.J. Krohn, H. Flicker, and M.C. Vasquez, Spectrochim. Acta 42A, 351 (1986).
- Г. Н. Макаров, А. Н. Петин, Письма в ЖЭТФ 112, 226 (2020).
- 32. Г. Н. Макаров, А. Н. Петин, ЖЭТФ 159, 281 (2021).
- Г. Н. Макаров, А. Н. Петин, Письма в ЖЭТФ 115, 292 (2022).
- В. Б. Лаптев, Г. Н. Макаров, А. Н. Петин, Е. А. Рябов, ЖЭТФ 162, 60 (2022).
- 35. R.S. Karve, S.K. Sarkar, K.V.S. Rama Rao, and J. P. Mittal, Appl. Phys. B 53, 108 (1991).
- 36. B.Y. Mohan, J. Chem. Phys. 46, 98 (1967).
- 37. S.W. Benson, Chem. Rev. 78, 23 (1978).
- R. E. Noftle, R. R. Smardzewski, and W. B. Fox, Inorg. Chem. 16(12), 3380 (1977).