Наклон и анизотропия дираковского спектра, вызванные перекрытием блоховских функций

3. 3. Алисултанов^()+*1), Н. А. Демиров[×]

* Московский физико-технический институт (МФТИ), Международный центр теоретической физики им. А.А.Абрикосова, 141701 Долгопрудный, Россия

*Институт физики, Дагестанский федеральный исследовательский центр РАН, 367015 Махачкала, Россия

[×] Объединенный институт высоких температур РАН (ОИВТРАН), 125412 Москва, Россия

Поступила в редакцию 13 апреля 2023 г. После переработки 14 апреля 2023 г. Принята к публикации 14 апреля 2023 г.

Показано, что в системах с дираковскими точками, возникающими при пересечении зон, принадлежащих эквивалентным представлениям группы симметрии возможно перекрытие этих зон. Такое перекрытие приводит к наклону и дополнительной анизотропии дираковского спектра, а также перенормировке скорости. В то же время, учет перекрытия не нарушает общих условий существования устойчивой точки пересечения зон. Эффективный дираковский гамильтониан при наличии перекрытия зон является псевдоэрмитовым и соответствует эффективному действию безмассового спинорного поля в искривленном пространстве-времени.

DOI: 10.31857/S1234567823100105, EDN: cnsjbg

Дираковские и вейлевские полуметаллы находятся в центре внимания многих исследователей из-за их уникальных свойств, таких как киральная аномалия, отрицательное магнитсопротивление, фермиарочные поверхностные состояния и т.д. [1]. В этих материалах реализуются так называемые безмассовые моды, подчиняющиеся уравнениям Дирака и Вейля [2,3]. Трехмерные дираковские полуметаллы интересны с фундаментальной точки зрения тем, что они представляют собой удобную платформу для изучения 3 + 1 дираковского вакуума. В отличие от вейлевского полуметалла, в дираковском полуметалле линейный спектр образуется в результате пересечения вырожденных зон (см., например, [4, 5]). Возникновение дираковской точки в результате такого пресечения, как правило, защищено симметриями пространственной группы кристаллической решетки (самый известный пример – точки Дирака в графене [6, 7]), а не отличным от нуля числом Черна, как в вейлевских полуметаллах, или неэквивалентностью представлений группы симметрии зоны Бриллюэна, к которым принадлежат пересекающиеся зоны.

Отдельный интерес представляют дираковские системы с наклонным спектром. Такой спектр возникает при пересечении электронных и дырочных ферми-карманов [8-12]. В этой статье мы изучаем

777

Дирака и индуцированный таким перекрытием наклон спектра. Про физические причины перекрытия зон будет упомянуто ниже. Здесь укажем на самые общие требования. В общем случае, такое перекрытие возможно, когда пересекающиеся зоны относятся к эквивалентным представлениям группы симметрии. Таким образом, мы изучаем ситуацию, когда с одной стороны между зонами имеется перекрытие, а с другой – эти зоны пересекаются в некоторых точках зоны Бриллюэна. Возможность существования таких устойчивых точек пересечения была предсказана еще в пионерской работе Херринга [13]. Согласно Херрингу, такие изолированные точки пересечения зон могут возникать в кристаллах без центра инверсии, причем они могут лежать в плоскости симметрии зоны Бриллюэна или в плоскости, перпендикулярной оси второго порядка. В кристаллах с центром инверсиии пересечение зон, принадлежащих эквивалентным представлениям, также возможно, только областью пересечения будут не изолированные точки, а замкнутые кривые в зоне Бриллюэна. В настоящей работе нас интересует случай изо-

возможности перекрытия зон в окрестности точки

Покажем, что зоны, относящиеся к различным, но эквивалентным представлениям, могут перекрываться. Для этого необходимо показать, что интеграл перекрытия

лированных точек пересечения.

¹⁾e-mail: zaur0102@gmail.com

$$S_k^{\alpha\beta} = \int d^3 \mathbf{r} \psi_k^{(\alpha)*} \psi_k^{(\beta)} \tag{1}$$

не обращается в нуль. В этом выражении k – это квантовое число, характеризующее зону (в нашем случае это волновой вектор), а верхние индексы (α, β) обозначают различные представления группы, к которым относятся соответствующие зоны, т.е.

$$\psi_k^{(\alpha,\beta)} = \sum_q G_{kq}^{(\alpha,\beta)} \psi_q^{(\alpha,\beta)}.$$
 (2)

Подставляя в (1) и суммируя обе части по всем элементам группы, получаем

$$gS_k^{\alpha\beta} = \sum_{qq'} \int d^3 \mathbf{r} \psi_q^{(\alpha)*} \psi_{q'}^{(\beta)} \sum_G G_{kq}^{(\alpha)*} G_{kq'}^{(\beta)}, \quad (3)$$

где *g* есть размерность группы. Так как мы рассматриваем эквивалентные представления, то

$$G^{(\beta)} = AG^{(\alpha)}A^{-1}.$$
 (4)

Учитывая это соотношение, из предыдущего равенства получаем

$$S_{k}^{\alpha\beta} = \frac{A_{kk}}{f_{\alpha}} \sum_{qq'} \int d^{3}\mathbf{r} \psi_{q}^{(\alpha)*} \psi_{q'}^{(\beta)} A_{qq'}^{-1}, \qquad (5)$$

где мы воспользовались условием ортонормированности представления

$$\sum_{G} G_{ki}^{(\alpha)*} G_{mn}^{(\alpha)} = \frac{g}{f_{\alpha}} \delta_{km} \delta_{in}, \qquad (6)$$

где f_{α} есть размерность представления. Если учесть ортогональность блоховских зон по волновому вектору, то получаем

$$S_k^{\alpha\beta} = \frac{A_{kk}}{f_\alpha - 1} \sum_{q \neq k} S_q^{\alpha\beta} A_{qq}^{-1}.$$
 (7)

Таким образом, интеграл перекрытия не обращается тождественно в нуль в случае различных, но эквивалентных неприводимых представлений. Легко показать, что в случае неэквивалентных представлений интеграл перекрытия тождественно обращается в нуль.

Получим эффективный дираковский гамильтониан и спектр в рамках двухзонной модели при наличии перекрытия между зонами. Для этого мы повторим простейший вывод двухзонного гамильтониана. Вектор состояния в двухзонной модели имеет вид $|\Psi_{\mathbf{p}}\rangle = C_u |u_{\mathbf{p}}\rangle + C_v |v_{\mathbf{p}}\rangle$, где амплитуда $C_{u/v}$ соответствует блоховским функциям $|u_{\mathbf{p}}\rangle / |u_{\mathbf{p}}\rangle$. Умножая слева волновое уравнение $H |\Psi_{\mathbf{p}}\rangle = E_{\mathbf{p}} |\Psi_{\mathbf{p}}\rangle$ на $\langle u_{\mathbf{p}}|$ и $\langle v_{\mathbf{p}}|$, получим систему уравнений

$$\begin{pmatrix} \mathcal{H}_{uu}^{\mathbf{p}} & \mathcal{H}_{uv}^{\mathbf{p}} \\ \mathcal{H}_{vu}^{\mathbf{p}} & \mathcal{H}_{vv}^{\mathbf{p}} \end{pmatrix} \begin{pmatrix} C_{u} \\ C_{v} \end{pmatrix} = \\ = E_{\mathbf{p}} \begin{pmatrix} S_{uu}^{\mathbf{p}} & S_{uv}^{\mathbf{p}} \\ S_{vu}^{\mathbf{p}} & S_{vv}^{\mathbf{p}} \end{pmatrix} \begin{pmatrix} C_{u} \\ C_{v} \end{pmatrix} = \\ = [f_{0}(\mathbf{p}) + \sigma_{i}f_{i}(\mathbf{p})] \begin{pmatrix} C_{u} \\ C_{v} \end{pmatrix}, \qquad (8)$$

где $\mathcal{H}_{ab}^{\mathbf{p}} = \langle a_{\mathbf{p}} | \mathcal{H} | b_{\mathbf{p}} \rangle$ есть матричный элемент гамильтониана с a, b = u, v, а $S_{\mathbf{p}}^{ab} = \langle a_{\mathbf{p}} | b_{\mathbf{p}} \rangle =$ $= \int a_{\mathbf{p}}^{*}(\mathbf{r}) b_{\mathbf{p}}(\mathbf{r}) d^{3}\mathbf{r}$ есть интеграл перекрытия зон, σ_{i} есть матрица Паули с i = x, y, z, а $f_{0}(\mathbf{p})$ умножается на единичную матрицу 2 × 2. Обычно блоховские функции считаются ортогональными, так что матрица перекрытия в (8) становится единичной $S_{\mathbf{p}}^{ab} = \delta_{ab}$. Однако в реальных материалах это, строго говоря, не так (например, одной из главных причин такого являются многочастичные эффекты) [14–19]. Возможность перекрытия блоховских функций можно увидеть и из простых рассуждений. Для этого введем блоховские функции в простейшем виде $u_{\mathbf{p}}(\mathbf{r}) = \sum_{\mathbf{R}} e^{-i\mathbf{p}(\mathbf{r}-\mathbf{R})}\phi_{u}(\mathbf{r}-\mathbf{R})$ и $v_{\mathbf{p}}(\mathbf{r}) = \sum_{\mathbf{R}} e^{-i\mathbf{p}(\mathbf{r}-\mathbf{R})}\phi_{v}(\mathbf{r}-\mathbf{R})$, где ϕ_{u}, ϕ_{v} есть атомные орбитали, соответствующие зонам u, v, а **R** есть радиус-вектор атома в узле решетки. Тогда интеграл перекрытия может быть записан в следующем виде:

$$\int u_{\mathbf{p}}^{*}(\mathbf{r})v_{\mathbf{p}}(\mathbf{r})d^{3}\mathbf{r} =$$
$$= \sum_{\mathbf{RR}'} e^{i\mathbf{p}(\mathbf{R}-\mathbf{R}')} \int \phi_{u}^{*}(\mathbf{r}-\mathbf{R}')\phi_{v}(\mathbf{r}-\mathbf{R})d^{3}\mathbf{r}.$$
 (9)

Орбитали, соответствующие данному атому ($\mathbf{R} = \mathbf{R}'$), всегда ортогональны: $\int \phi_a^* (\mathbf{r} - \mathbf{R}') \phi_b (\mathbf{r} - \mathbf{R}) d^3 \mathbf{r} = \delta_{ab}$. Однако, для различных атомов $\mathbf{R} \neq \mathbf{R}'$, строго говоря, такой ортогональности нет, что приводит к отличным от нуля недиагональным элементам матрицы перекрытия $S_{\mathbf{p}}^{ab}$. Это дает ненулевое перекрытие между блоховскими зонами. Следует при этом отметить, что в самой точке вырождения перекрытие тождественно обращается в нуль из-за теоремы Крамерса. Действительно, согласно этой теореме в точке пересечения \mathbf{p}_0 существует связь между зонами $\mathcal{T} | u_{\mathbf{p}_0} \rangle = | v_{\mathbf{p}_0} \rangle$, где \mathcal{T} – оператор обращения времени. Тогда можно показать, что $\langle u_{\mathbf{p}_0} | \mathcal{T} u_{\mathbf{p}_0} \rangle = 0$ [20, 21]. Уравнение (8) можно переписать в виде

$$(S_{\mathbf{p}})^{-1} \left[f_0(\mathbf{p}) + \sigma_i f_i(\mathbf{p}) \right] \begin{pmatrix} C_u \\ C_v \end{pmatrix} = \tilde{\mathcal{H}} \begin{pmatrix} C_u \\ C_v \end{pmatrix}, \quad (10)$$

Письма в ЖЭТФ том 117 вып. 9-10 2023

где $S^{ab}_{\mathbf{p}}$ есть матрица в правой части уравнения (8). В окрестности точки Дирака мы имеем $f_i(\mathbf{p}) \approx v_F p_i$ и $f_0(\mathbf{p}) = 0$. Если записать компоненты интеграла перекрытия в виде $S^{uu(vv)}_{\mathbf{p}} = 1$ (это следует из нормировки функций Блоха), $S^{uv}_{\mathbf{p}} = (i\vartheta_y - \vartheta_x)/v_F = (S^{vu}_{\mathbf{p}})^*$, то соответствующий эффективный гамильтониан $\tilde{\mathcal{H}} = (S^{\mathbf{p}}_{ab})^{-1} [f_0(\mathbf{p}) + \sigma_i f_i(\mathbf{p})]$ принимает вид

$$\tilde{\mathcal{H}} = \frac{1}{1 - \beta^2} \left(\boldsymbol{\vartheta} \cdot \mathbf{p} + \boldsymbol{\sigma} \cdot \left(v_F \mathbf{p} + i \left[\mathbf{p} \times \boldsymbol{\vartheta} \right] \right) \right), \quad (11)$$

где $\beta = \vartheta/v_F, \, \vartheta = |\vartheta|$. Спектр такого гамильтониана имеет вид

$$\varepsilon(p) = \frac{\boldsymbol{\vartheta} \cdot \mathbf{p} \pm \sqrt{(\boldsymbol{\vartheta} \cdot \mathbf{p})^2 + (1 - \beta^2)v_F^2 p^2}}{1 - \beta^2}.$$
 (12)

Как видно, в гамильтониане из-за перекрытия возникает новый векторный параметр $\boldsymbol{\vartheta} = (\vartheta_x, \vartheta_y, 0)$, приводящий к наклону спектра. На рисунке 1 показан спектр при различных значениях параметра перекрытия. Далее в статье мы полагаем, что $v_F = 1$.

Заметим, что гамильтониан (11) является неэрмитовым. Однако спектр такого гамильтониана действителен. Это связано с тем, что в действительности этот гамильтониан является псевдоэрмитовым, т.е. обладает свойством

$$\tilde{\mathcal{H}}^{\dagger} = \eta \tilde{\mathcal{H}} \eta^{-1}, \tag{13}$$

где оператор η может быть представлен в виде $\eta = D^{\dagger}D$, где D есть некоторый невырожденный оператор. Условие псевдо-эрмитовости (13) является более общим условием действительности спектра гамильтониана [22–25]. Для эрмитового гамильтониана оператор D унитарен и условие (13) превращается в обычное условие эрмитовости. Покажем, что для нашего гамильтониана (11) это условие выполняется всегда из-за того, что $\beta < 1$. Необходимо доказать, что условие

$$\eta \boldsymbol{\sigma} \cdot (\mathbf{p} + i [\mathbf{p} \times \boldsymbol{\vartheta}]) \eta^{-1} = \boldsymbol{\sigma} \cdot (\mathbf{p} - i [\mathbf{p} \times \boldsymbol{\vartheta}])$$
 (14)

с $\eta=D^\dagger D$ выполняется при $\vartheta<1.$ Из эрмитовости матрицы $\eta=D^\dagger D$ следует общий вид этой матрицы

$$\eta = a_0 + \boldsymbol{\sigma} \cdot \mathbf{a},\tag{15}$$

где $a_0, \mathbf{a} \in \mathbb{R}$. Условие (14) теперь перепишется в виде

$$(a_0 + \boldsymbol{\sigma} \cdot \mathbf{a}) (1 + \boldsymbol{\sigma} \cdot \boldsymbol{\vartheta}) \boldsymbol{\sigma} \cdot \mathbf{p} =$$

= $(1 - \boldsymbol{\sigma} \cdot \boldsymbol{\vartheta}) \boldsymbol{\sigma} \cdot \mathbf{p} (a_0 + \boldsymbol{\sigma} \cdot \mathbf{a}).$ (16)

Это условие выполняется при $a_0 = 1$ и $\mathbf{a} = -\boldsymbol{\vartheta}$. Если представление $\eta = D^{\dagger}D$ возможно, то det $\eta =$ $= \det (D^{\dagger}D) = |\det (D)|^2 > 0$. Отсюда следует, что

Письма в ЖЭТФ том 117 вып. 9-10 2023

гис. 1. (цветной онлайн) Зависимость энергий от импульса (12) при $p_z = 0$ при наличии перекрытия, которое для простоты задано в виде $\vartheta = (\vartheta_x, 0, 0)$. Верхний рисунок соответствует $\vartheta_x = 0$, средний – $\vartheta_x = 0.3$, нижний – $\vartheta_x = 0.6$. По горизонтальным осям отложены (p_x, p_y)

 $a_0^2 - a_i^2 > 0$. Другими словами, если $a_0^2 - a_i^2 < 0$, то представление $\eta = D^{\dagger}D$ невозможно и условие действительности спектра (13) не выполняется. Таким образом, мы приходим к выводу, что спектр гамильтониана (11) вещественен при $\vartheta < 1$. В частности, это означает, что топологические характеристики такого гамильтониана ничем не отличаются от случая простого дираковского гамильтониана $\boldsymbol{\sigma} \cdot \mathbf{p}$.

Можно подумать, что при наличии перекрытия между зонами изменятся условия существования точек контакта этих зон, полученных впервые в [13]. В частности, это могло бы привести к устранению точек контакта и открытию щели. Давайте повторим вывод поведения энергетического спектра вблизи контакта в рамках **kp**-приближения при наличии перекрытия. В рамках теории **кр**-приближения (межэлектронное взаимодействие V учитывается в рамках приближения Хартри) имеем

$$\left[-\frac{\hbar^2 \nabla^2}{2m} - \frac{i\hbar^2}{m} \mathbf{k} \cdot \boldsymbol{\nabla} + \frac{\hbar^2}{2m} + V\right] |u_{\mathbf{k}}\rangle = E_k |u_{\mathbf{k}}\rangle.$$
(17)

Согласно стандартной процедуре, в окрестности контакта $\mathbf{k} + \boldsymbol{\kappa}$, где $\boldsymbol{\kappa}$ есть малое отклонение, величина $-\frac{i\hbar^2}{m}\boldsymbol{\kappa}\cdot\boldsymbol{\nabla}$ рассматривается как возмущение. При наличии перекрытия получим следующее выражение для изменения энергии $\delta E(\mathbf{k} + \boldsymbol{\kappa})$ при малом отклонении от контакта

$$\delta E \left(\mathbf{k} + \boldsymbol{\kappa}\right) =$$

$$= \pm \frac{\sqrt{\left(\boldsymbol{\kappa} \cdot \overline{\mathbf{f}}\right)^2 + \left(\boldsymbol{\kappa} \cdot \operatorname{Reg}\right)^2 + \left(\boldsymbol{\kappa} \cdot \overline{\operatorname{Img}}\right)^2}}{1 - \vartheta_x^2} + o\left(\kappa^2\right),$$
(18)

где $\overline{\mathbf{f}} = \mathbf{f} + i\vartheta_x \text{Im}\mathbf{g}$, $\overline{\text{Im}\mathbf{g}} = \text{Im}\mathbf{g} - i\vartheta_x\mathbf{f}$ и мы для простоты положили $\boldsymbol{\vartheta} = (\vartheta_x, 0, 0)$, а вектора \mathbf{f} и \mathbf{g}

$$\mathbf{f} = -i\frac{\hbar^2}{m} \left[\langle u_{\mathbf{k}} | \nabla u_{\mathbf{k}} \rangle - \langle v_{\mathbf{k}} | \nabla v_{\mathbf{k}} \rangle \right], \tag{19}$$

$$\mathbf{g} = i\frac{\hbar^2}{m} \left\langle u_{\mathbf{k}} | \nabla v_{\mathbf{k}} \right\rangle. \tag{20}$$

Достаточное условие существования контакта сводится к тому, чтобы ни один из трех векторов $\mathbf{f} + i\vartheta_x \operatorname{Im} \mathbf{g}, \operatorname{Re} \mathbf{g}, \operatorname{Im} \mathbf{g} - i\vartheta_x \mathbf{f}$ тождественно не обращался в нуль. Если какой-нибудь из этих векторов тождественно обращается в нуль, то всегда будет существовать направление к, для которого остальные два вектора будут в перпендикулярной плоскости. В этом направлении спектр будет квадратичен по импульсу (так как линейный член ряда Тейлора тождественно обращается в нуль), т.е. любое сколь угодно малое возмущение может создать разрыв зон. При наличии центра инверсии вектор Reg всегда равен нулю. Следовательно, в этом случае не будет изолированной точки контакта зон. При отсуствии центра инверсии, вообще говоря, тождественно в нуль не обращается ни один из векторов. Для каких-то направлений к при наличии перекрытия можно ожидать, что $\text{Im}\mathbf{g} - i\vartheta_x\mathbf{f} = 0$. Но такое равенство возможно только при $\text{Im}\mathbf{g} = \mathbf{f} \equiv 0$, так как вектор **f** действительный. Однако, даже если предположить, что вектор f стал по каким-то причинам комплексным, то и в этом случае условия $\text{Im}\mathbf{g} - i\vartheta_x\mathbf{f} = 0$ еще не достаточно, чтобы контакт исчез. Должно еще выполняться дополнительное условие $\mathbf{f}, \operatorname{Reg} \perp \kappa$ для данного направления вектора κ . Таким образом, мы приходим к выводу, что обращение в нуль подкоренного выражения в изолированной точке возможно только при условии, что три вектора **f**, Reg, Img компланарны, либо хотя бы один из них тождественно обращается в нуль. Это полностью совпадает с выводами работы [13], т.е. учет перекрытия влияет только на форму спектра и не затрагивает фундаментальные условия существования точки Дирака.

Выше мы показали, что перекрытие между зонами приводит к наклону спектра. Однако, если в точке Дирака пересекаются электронные и дырочные ферми-карманы, то спектр имеет наклон и без перекрытия. Наличие же последнего приводит лишь к дополнительному наклону. Общий гамильтониан, содержащий наклон и перекрытие имеет вид (вывод такой же, что и в случае спектра без наклона, только надо положить $f_0(\mathbf{p}) = \boldsymbol{\omega} \cdot \mathbf{p}$)

$$\tilde{\mathcal{H}} = \frac{1}{1 - \beta^2} \left[(\boldsymbol{\omega} + \boldsymbol{\vartheta}) \cdot \mathbf{p} + \boldsymbol{\sigma} \cdot (\mathbf{p} + (\boldsymbol{\omega} \cdot \mathbf{p}) \,\boldsymbol{\vartheta} + i \left[\mathbf{p} \times \boldsymbol{\vartheta} \right] \right] \right].$$
(21)

Теперь гамильтониан содержит два параметра ω , ϑ . Сразу заметим, что при $\vartheta = -\omega$ наклон исчезает полностью. Таким образом, перекрытие между зонами может привести к тому, что спектр становится прямым. В системе с двумя точками Дирака вектор наклона имеет противоположные знаки в различных точках. Это означает, что за счет перекрытия наклон исчезнет при $\boldsymbol{\vartheta} = -\boldsymbol{\omega}$ только в одной из точек. Таким образом, возможна фаза, когда в одной точке дирака спектр наклонный, а в другой – прямой. Можно подумать, что в таком случае возникнет равновесный ток из-за отличного от нуля суммарного наклона от двух точек. Однако анизотропия спектра такова, что равновесный ток по-прежнему равен нулю. На рисунке 2 приведены спектры (поверхности постоянной энергии) для различных значений параметра перекрытия при наличии наклона.

Наконец, заметим, что гамильтониан (21) соответствует действию спинорного поля в искривленном пространстве-времени. Это можно увидеть, если в рамках тетрадного формализма в общем лагранжиане

$$\mathcal{L} = i\overline{\psi}\gamma^{\nu}e^{\mu}_{\nu}\partial_{\mu}\psi \tag{22}$$

положить $e_{\nu}^{\mu} = v_F \delta_{\nu}^{\mu} + \delta_{\nu}^0 \omega^i \delta_i^{\mu} + \vartheta_i \delta_{\nu}^i \delta_0^{\mu}$. Такие вейлевские фермионы были предложены в работах [26, 27]. Отличие от нуля компонент e_i^0, e_0^i тетрады (эти компоненты равны $e_i^0 = \vartheta_i, e_0^i = \omega^i$) говорит об искривленности пространства-времени. Один из основных выводов настоящей работы состоит в том, что тако-

Рис. 2. (Цветной онлайн) Спектр (поверхности постоянной энергии) гамильтониана (21) при $p_z = 0$ при наличии наклона $\boldsymbol{\omega} = (-0.7, 0, 0)$ при различных значениях перекрытия $\boldsymbol{\vartheta} = (\vartheta_x, 0, 0)$: (a) $-\vartheta_x = 0$; (b) $-\vartheta_x = 0.4$; (c) $-\vartheta_x = 0.7$; (d) $-\vartheta_x = 0.8$

му лагранжиану в точности соответствует гамильтониан (21). Это можно увидеть, составив уравнение Эйлера–Лагранжа. Таким образом, учет перекрытия между зонами эффективно проявляется как искривление пространства-времени для спинорного дираковского поля. Это дает уникальную возможность моделировать в таких дираковских системах различные экзотические явления, связанные с искривлением пространства-времени. В этой связи необходимо упомянуть работу [28] (см. также работу Вильчека с соавторами [29]), в которой неоднородные вейлевские спектры с наклоном были использованы для эффективного моделирования горизонта событий вблизи черных и белых дыр. Однако, такие спектры не содержат связи между пространственными компонентами матрицы Дирака и временной компонентой импульса (тетрада e_i^0), и поэтому не позволяют моделировать все особенности искривленного пространствавремени. Этот недостаток компенсируется перекрытием, за счет которого и возникает не хватающий по симметрии вклад компоненты e_i^0 .

Итак, в этой работе мы изучили эффекты перекрытия зон на дираковский гамильтониан. Эти эффекты должны быть учтены при анализе различных явлений в дираковских системах с наклонным спектром (см., например, [30-33]).

Работа поддержана грантом Российского научного фонда
 # 22-72-00110.

- N.P. Armitage, E.J. Mele, and A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018).
- P. A. Dirac, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 117, 610 (1928).
- 3. H. Weyl, Proc. Natl. Acad. Sci. USA 15(4), 323 (1929).
- 4. S. Murakami, New J. Phys. 9(9), 356 (2007).
- S. Murakami, S. Iso, Y. Avishai, M. Onoda, and N. Nagaosa, Phys. Rev. B 76, 205304 (2007).
- 6. M. Katsnelson, *Graphene: Carbon in Two Dimensions*, Cambridge University Press, Cambridge (2012).
- E. Kogan and V.U. Nazarov, Phys. Rev. B 85, 115418 (2012).
- B. Bradlyn, J. Cano, Z. Wang, M. Vergniory, C. Felser, R. Cava, and B.A. Bernevig, Science 353, aaf5037 (2016).
- A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, and B. A. Bernevig, Nature 527(7579), 495 (2015).
- B. J. Wieder, Y. Kim, A. M. Rappe, and C. L. Kane, Phys. Rev. Lett. **116**, 186402 (2016).
- 11. З.З. Алисултанов, ЖЭТФ 152(5), 986 (2017).
- 12. З.З. Алисултанов, Письма в ЖЭТФ 107(4), 260 (2018).
- 13. C. Herring, Phys. Rev. 52, 365 (1937).
- E. Antoncık and P. T. Landsberg, Proc. Phys. Soc. 82, 337342 (1963).
- 15. V. Halpern, J. Phys. Chem. Solids 24, 14951502 (1963).
- N. Bernstein, M.J. Mehl, and D.A. Papaconstantopoulos, Phys. Rev. B 66, 075212 (2002).
- W. A. Harrison and S. Ciraci, Phys. Rev. B 10, 1516 (1974).
- J. Tejeda and N.J. Shevchik, Phys. Rev. B 13, 2548 (1976).
- T. B. Boykin, P. Sarangapani, and G. Klimeck, J. Appl. Phys. **125**, 144302 (2019).
- 20. C. Herring, Phys. Rev. 52, 361 (1937).
- C. Kittel, Quantum Theory of Solids, Wiley, N.Y. (1963).
- 22. A. Mostafazadeh, J. Math. Phys. 43, 205214 (2002).
- 23. A. Mostafazadeh, J. Math. Phys. 43, 28142816 (2002).
- 24. A. Mostafazadeh, J. Math. Phys. 43, 39443951 (2002).
- Z. Z. Alisultanov and E. G. Idrisov, Phys. Rev. B 107, 085135 (2023).
- J. Nissinen and G.E. Volovik, JETP Lett. 105, 442 (2017).
- J. Nissinen and G.E. Volovik, JETP **127**, 948957 (2018).
- G.E. Volovik, Black hole and Hawking radiation by type-II Weyl fermions, JETP Lett. 104, 645 (2016), arXiv:1610.00521

- Y. Kedem, E. J. Bergholtz, and F. Wilczek, Phys. Rev. Research 2, 043285 (2020).
- 30. I. Proskurin, M. Ogata, and Y. Suzumura, Phys. Rev. B 91, 195413 (2015).
- M. Milićević, G. Montambaux, T. Ozawa, O. Jamadi,
 B. Real, I. Sagnes, A. Lemaître, L. Le Gratiet,

A. Harouri, J. Bloch, and A. Amo Phys. Rev. X 9, 031010 (2019).

- 32. A. Wild, E. Mariani, and M.E. Portnoi, Phys. Rev. B 105, 205306 (2022).
- Y. Yekta, H. Hadipour, and S. A. Jafari, Commun. Phys. 6, 46 (2023).