Случайный лазер на основе материалов в виде сложных сетевых структур

А. Ю. Баженов⁺, М. М. Никитина⁺, Д. В. Царёв⁺, А. П. Алоджанц⁺¹⁾

+ Национальный исследовательский университет ИТМО, 197101 С.-Петербург, Россия

> Поступила в редакцию 18 апреля 2023 г. После переработки 22 апреля 2023 г. Принята к публикации 22 апреля 2023 г.

В работе впервые предложена теория случайного лазера, интерфейс которого составляют случайные, или безмасштабные сети, в узлах которых находятся микрорезонаторы с квантовыми двухуровневыми системами. Микрорезонаторы связаны между собой светопроводящими каналами, образующими ребра сети. Показано, что такой лазер обладает рядом особенностей в спектре, связанных со статистическими свойствами сетевой структуры. Среди них – существование топологически защищенного собственного значения Перрона, обусловленного наличием сильного среднего поля в узле максимального влияния, расположенного в центральной части сети, делокализация/локализация мод излучения в зависимости от вероятности связи произвольных микрорезонаторов между собой. Полученные результаты открывают перспективы в области создания новых низкопороговых источников лазерного излучения.

DOI: 10.31857/S1234567823110046, EDN: djcfic

Случайные лазеры (СЛ) можно назвать одним из наиболее интересных проявлений образования макроскопической когерентности в результате случайного рассеяния света в неупорядоченной, оптически активной среде [1]. Основные физические принципы, на которых функционируют современные СЛ, фактически были предложены еще В.С.Летоховым для атомных систем [2]. Эти принципы постоянно дополняются и уточняются с учетом того многообразия сред, в которых эффект СЛ наблюдается в эксперименте [1, 3–5]. Поскольку такие лазеры не требуют наличия внешних резонаторов, их свойства определяются величиной рассеяния излучения в среде. Слабое рассеяние фотонов на частицах среды формирует диффузионный режим СЛ, в то время как сильное рассеяние ведет к андерсоновской локализации излучения [3]. По сути, эти ключевые свойства и делают СЛ весьма полезными на практике.

Однако до сих пор требует изучения вопрос о том, в какой мере неупорядоченность среды может влиять на режимы СЛ, ср. с [6]. В этой связи выделим работу [4], где авторы продемонстрировали реализацию СЛ на структуре нановолокон, образующей случайный граф, помещенных в краситель родамин 6G, "ответственный" за усиление излучения. В [7, 8] при анализе формирования когерентного (на макроскопическом уровне) излучения в сложных сетевых структурах нами было показано, что порог лазерной генерации быстро убывает с увеличением связности графа, моделирующего среду, что экспериментально было выявлено в [4] для СЛ. Здесь уместно отметить, что исследование таких сложных сетевых структур является одним из наиболее интересных и важных направлений современной физики, имеющим ярко выраженное междисциплинарное значение [9].

Целью работы является выяснение физики формирования лазерного излучения в среде, топологически представляющей собой случайный (рис. 1а), или безмасштабный (рис. 1b) ненаправленный граф, образованный связанными микрорезонаторами (MP).

Рассматриваемую систему можно представить как некоторую сеть, в узлах которой находятся двухуровневые системы (ДУС), к примеру, квантовые точки. Этого можно добиться, например, как в [5], разместив ДУС в фотонокристаллической структуре, обладающей каналами распространения фотонов. С другой стороны, ДУС можно поместить в МР, физически представляющие связанные между собой микростолбики [10]. В данной работе для определенности остановимся на модели связанных МР, ср. с [11]. Таким образом, модель СЛ представляет собой N MP, каждый из которых содержит одинаковые ДУС, характеризуемые резонансной частотой (энергией) перехода ω_0 . Микрорезонаторы находятся в узлах сложной сети, ребра которой без потерь проводят свет. Поле в каждом *i*-м MP характеризуется опе-

 $^{^{1)}\}text{e-mail: alexander_ap@list.ru}$

Рис. 1. (Цветной онлайн) Интерфейс среды случайного лазера в виде: (a) – случайной ($k_{\text{max}} = 9, k_{\text{min}} = 1$) и (b) – безмасштабной ($k_{\text{max}} = 25, k_{\text{min}} = 2$) сети при N = 100; $k_{\text{max}/\text{min}}$ – максимальное/минимальное значение степеней узлов. Цветовые панели характеризуют собственные значения матрицы смежности τ_{ij} . (c) – Распределение степеней узлов соответствующих сетей в двойном логарифмическом масштабе. Остальные детали приведены в тексте

ратором уничтожения (рождения) \hat{f}_i (\hat{f}_i^{\dagger}) фотонов, i = 1, ..., N. В рамках приближения вращающейся волны оператор Гамильтона системы можно представить в виде (ср. с [12]):

$$\hat{H} = \hbar \sum_{i=1}^{N} \left[\frac{\omega_0 \hat{\sigma}_i^z}{2} + \omega_{ph,i} \hat{f}_i^{\dagger} \hat{f}_i + g(\hat{f}_i \hat{\sigma}_i^+ + \hat{f}_i^{\dagger} \hat{\sigma}_i^-) \right] - \frac{\hbar J}{2} \sum_{i,j=1}^{N} \tau_{ij} (\hat{f}_j^{\dagger} \hat{f}_i + \hat{f}_i^{\dagger} \hat{f}_j),$$
(1)

где ДУС *i*-го МР характеризуется оператором инверсии $\hat{\sigma}_i^z$, а также лестничными операторами, $\hat{\sigma}_i^{\pm}$; g – параметр взаимодействия ДУС с квантовой модой поля *i*-го МР частоты $\omega_{ph,i}$. В (1) J > 0 определяет взаимодействие МР между собой посредством волноводов (фотонных каналов), которое учитывается с помощью матрицы смежности τ_{ij} , элементы которой обладают свойствами $\tau_{ij} = \tau_{ji}$, $\tau_{ii} = 0$. При этом p_{ij} есть вероятность связи между *i*-м и *j*-м МР (в таком случае соответствующий элемент матрицы смежности $\tau_{ij} = 1, i \neq j$).

На рисунке 1 приведен интерфейс СЛ в виде случайной сети Эрдеша–Реньи (рис. 1а), а также безмасштабной сети (рис. 1b), смоделированных численно с помощью библиотеки Python NetworkX, соответственно. Последовательности точек и аппроксимирующие их кривые на рис. 1с представляют функции распределения степеней узлов этих сетей в двойном логарифмическом масштабе. А именно, кривые удовлетворяют пуассовскому ($p_k = \frac{1}{k!} \langle k \rangle^k e^{-\langle k \rangle}$) и степенному ($p_k \propto k^{-\eta}$) законам распределения; $\langle k \rangle = \frac{1}{N} \sum_j k_j = \frac{1}{N} \sum_{i,j} \tau_{ij}$ – средняя степень узлов. Параметры моделирования подобраны таким образом, чтобы оба графа на рис. 1 имели схожие статистические характеристики. В частности, $\langle k \rangle = 4.04$, $\zeta = 4.88$ для случайной сети, где $\zeta \equiv \sum_i k_i^2 / N \langle k \rangle$ определяет нормированный второй момент степеней узлов. Степень η для безмасштабной сети, а также ее статистические свойства можно оценить в континуальном приближении, воспользовавшись подходами, изложенными в [9]; полагая $k_{\rm max} = k_{\rm min} N^{\frac{1}{\eta-1}}$ получаем $\eta \simeq 2.82$, в результате чего имеем $\langle k \rangle = 3.9$, $\zeta = 6.1$, соответственно. Заметим, что безмасшабная сеть обладает хабами – узлами наибольшей связности, присутствующими в виде четырех синих точек для функции распределения в правом нижнем углу на рис. 1с.

В работе мы используем подход Гейзенберга– Ланжевена в приближении среднего поля, который с учетом (1) приводит к системе уравнений типа Максвелла–Блоха:

$$\dot{\mathcal{E}}_i = (-i\omega_{ph,i} - \kappa_i)\mathcal{E}_i - ig\bar{P}_i + iJ\sum_j \tau_{ij}\mathcal{E}_j; \qquad (2a)$$

$$\dot{\bar{P}}_i = (-i\omega_0 - \Gamma)\bar{P}_i + ig\sigma_i^z \mathcal{E}_i;$$
(2b)

$$\dot{\sigma}_i^z = (\gamma_P - \gamma_D) - (\gamma_P + \gamma_D)\sigma_i^z + 2ig(\mathcal{E}_i^*P_i - \mathcal{E}_iP_i^*),$$
(2c)

где $\mathcal{E}_i = \langle \hat{f}_i \rangle$, $\bar{P}_i = \langle \hat{\sigma}_i^- \rangle$, $\sigma_i^z = \langle \hat{\sigma}_i^z \rangle$ – средние значения соответствующих операторных величин; Γ – скорость затухания поляризации, которую считаем одинаковой для всех ДУС, κ_i – скорость потерь фотонов в *i*-м MP, γ_P – скорость накачки, γ_D – скорость затухания инверсии. Далее, уберем "быстрые" колебания и рассмотрим стационарные состояния систе-

мы на частоте ω , положив в (2) $\bar{P}_i(t) = P_i e^{-i\omega_0 t - i\omega t}$, $\mathcal{E}_i(t) = E_i e^{-i\omega_0 t - i\omega t}$, откуда имеем:

$$(\omega - \Delta_i + i\kappa_i)E_i - gP_i + J\sum_{j=1}^N \tau_{ij}E_j = 0; \qquad (3a)$$

$$(i\Gamma + \omega)P_i + g\sigma_i^z E_i = 0, \qquad (3b)$$

где $\Delta_i = \omega_{ph,i} - \omega_0$ – отстройка от резонанса для *i*-го MP, величину которой полагаем относительно небольшой, т.е. $|\Delta_i| < g$ для всех i = 1, ..., N. При этом среднюю инверсию населенностей в (2c) считаем заданной, так что $\dot{\sigma}_i^z = 0$ и $\sigma_i^z \simeq \frac{\gamma_P - \gamma_D}{\gamma_P + \gamma_D}$, ср. с [6]. Физически значение $\omega = 0$ в (3) означает эволю-

Физически значение $\omega = 0$ в (3) означает эволюцию как (среднего) поля, так и поляризации на частоте ω_0 , соответствующей частоте перехода ДУС.

Разрешая уравнение (3b) относительно поляризации P_i и подставив его в (3a), получаем уравнение для комплексной амплитуды поля E_i *i*-го MP в виде:

$$\{(\omega - \Delta_i + i\kappa_i)\omega_{\Gamma} + \sigma^z\} E_i + J\omega_{\Gamma} \sum_{j=1}^N \tau_{ij} E_j = 0, \quad (4)$$

где $\omega_{\Gamma} \equiv \omega + i\Gamma$; параметры $\omega, \Delta_i, \kappa_i, \Gamma, J$ нормированы на g.

Проанализируем важный предельный случай (4), допуская *i*-й МР изолированным от остальной сетевой структуры. Тогда, полагая в (4) $\tau_{ij} = 0$, приходим к выражениям

$$\omega_{1,2} = -i\chi_{+,i} + \frac{1}{2} \left(\Delta_i \pm \sqrt{(\Delta_i - 2i\chi_{-,i})^2 - 4\sigma^z} \right),$$
(5)

определяющим характерные высоко- (ω_1) и низкочастотные (ω_2) элементарные колебания соответственно; $\chi_{\pm,i} \equiv (\kappa_i \pm \Gamma)/2$. Заметим, что физически отрицательная мнимая часть частоты ($\text{Im}[\omega] < 0$) в (5) отвечает за диссипацию энергии в системе, в то время как при $\text{Im}[\omega] > 0$ происходит усиление, обусловленное инверсией. А именно, в безинверсном случае, т.е. при $\sigma^z \simeq -1$, характерные частоты $\omega_{1,2}$ соответствуют обычным поляритонам верхней и нижней дисперсионных ветвей [13]. В пределе максимальной инверсии $\sigma^z \simeq 1$ образуются поляритоны Рамановского типа, соответствующие усилению излучения в среде [14]. Далее нас интересуют условия перехода рассматриваемой системы МР к лазерной генерации, когда $0 \le \sigma^z \le 1$. Для численных расчетов удобно использовать исходную систему (3), полагая, что отстройка Δ_i , а также κ_i для произвольной *i*-й моды СЛ есть случайные величины, равномерно распределенные в некоторых промежутках, ср. с [6].

Письма в ЖЭТФ том 117 вып. 11-12 2023

На рисунке 2 представлены зависимости мнимых частей собственных частот СЛ от вещественных значений этих же частот, находящиеся несколько ниже порога генерации, определяемого условием Im[ω] = = 0, и соответствующие графам на рис. 1. Как и ожидалось, формируются две области решений, соответствующие характерным частотам $\omega_{1,2}$. Численные значения нормированных на *g* параметров κ_i , Г для зависимостей на рис. 2 и ниже в статье выбраны таким образом, чтобы выполнялось (хотя, и на "пределе") условие сильной связи между каждым ДУС и полем, κ_i , $\Gamma < 1$, ср. с [10].

Рис. 2. (Цветной онлайн) Положение собственных частот СЛ на комплексно-вещественной плоскости для ω , соответствующих случайной (красный цвет) и безмасштабной (синий цвет) сетям, приведенным на рис. 1 при $\sigma^z = 0.1, \Gamma = 0.5, J = 0.6$. Параметры Δ_i и κ_i – случайные величины, принимающие с равной вероятностью значения в интервалах [-0.5, 0.5] и [$0.5\Gamma, 0.8\Gamma$] соответственно

Выясним закономерности группирования точек на рис. 2. Поскольку оба графа на рис. 1 имеют близкие статистические характеристики, выражаемые величинами $\langle k \rangle$ и ζ , то и условные "огибающие" приведенных на рис. 2 дискретных зависимостей достаточно близки между собой. Принципиальной особенностью спектра собственных частот является наличие изолированного (максимального по величине) собственного значения Перрона, СЗП (Perron eigenvalue) – крайние (слева) жирные точки для каждого из графов на рис. 2. Это связано непосредственно со свойствами спектра матрицы смежности τ_{ij} для сложных сетей, для которых СЗП заключено в интервале значений $[\langle k \rangle, k_{\max}]$, см. например, [15]. На рисунке 1а и 1b СЗП соответствуют светложелтые узлы, находящиеся приблизительно в центре графов. В частности, теорема Перрона–Фробениуса

гарантирует (для τ_{ij}) существование невырожденного положительного максимального СЗП с полностью положительными элементами собственного вектора; поскольку в (1) τ_{ij} присутствует с отрицательным знаком, то и соответствующие СЗП находятся в отрицательной области собственных частот на рис. 2.

Заметим, что СЗП вовсе не обязано соответствовать хабу, т.е. узлу, обладающему максимальной связностью. СЗП характеризует узел максимального влияния, определяемый по критерию собственных векторов (*eigenvector centrality*) [16]. Например, случайные сети не обладают хабами вовсе, но узел максимального влияния для них существует – светложелтая точка на рис. 1а. Физически существование таких узлов связано с наличием ненулевого усредненного (по узлам сети) поля \bar{E} :

$$\bar{E} = \frac{1}{N\langle k \rangle} \sum_{j=1}^{N} k_j E_j, \qquad (6)$$

где $k_j = \sum_i \tau_{ij}$ есть степень *j*-го узла.

Для исследования СЗП воспользуемся аппроксимацией отожженной сети для матрицы смежности в виде $\tau_{ij} = \frac{k_i k_j}{N\langle k \rangle}$ (ср. с [7, 9]), и подставим ее в (4). Разрешив полученное уравнение относительно E_i , получим

$$E_i = -\frac{J(\omega_P + i\Gamma)k_i\bar{E}}{\{(\omega_P - \Delta_i + i\bar{\kappa})(\omega_P + i\Gamma) + \sigma^z\}},$$
(7)

где $\bar{\kappa}$ – определяет средний уровень потерь фотонов в заданном интервале значений κ_i , ω_P – СЗП для частоты. Выражение (7) означает, что поле в *i*-м узле, соответствующем СЗП, полностью определяется средним полем \bar{E} , создаваемым сетевой структурой. Подставляя (7) в (6) для ω_P , получим:

$$\operatorname{Re}[\omega_{P,1}] \simeq -J\zeta, \quad \operatorname{Im}[\omega_{P,1}] \simeq -\bar{\kappa},$$
 (8a)

$$\operatorname{Re}[\omega_{P,2}] = 0, \quad \operatorname{Im}[\omega_{P,2}] = -\Gamma, \tag{8b}$$

где мы опустили отстройку Δ_j в случае ее малости по сравнению с величиной $J\zeta$, а также для простоты рассмотрели случай $\sigma^z \simeq 0$. Результаты (8) согласуются с численным моделированием, см. рис. 2: Im[$\omega_{P,1}$] соответствует розовой пунктирной линии. При этом характерная частота в нижней области $\omega_{P,1}$ остается мнимой: Im[$\omega_{P,2}$] соответствует зеленой линии на рис. 2, что физически означает быструю диссипацию низкочастотных возмущений в присутствии высокочастотных колебаний на частоте СЗП Re[$\omega_{P,1}$]. Заметим, что поскольку параметр ζ для безмасштабной сети больше (по абсолютной величине), чем для случайной (ср. с [7]), то СЗП в первом случае (синяя жирная точка) находится левее СЗП для случайной сети – красная жирная точка на рис. 2. Рассмотрим теперь точки на рис. 2, которые располагаются вдоль среднего уровня потерь фотонов $Im[\omega] = -\bar{\kappa}$, и для которых $E_i \simeq E_j$. Данное допущение оправдано опять же в виду свойств матрицы смежности, обладающей относительно большим по величине СЗП, и меньшими остальными собственными значениями, см. [15]. В эту группу попадают как точки, которые обладают существенным влиянием, так и хабы, которые имеются в безмасштабной сети, см. рис. 1b. В результате, с помощью (4) для характерных частот имеем:

$$\omega_{1,2} = -i\chi_{+} + \frac{1}{2} \left(\delta_i \pm \sqrt{(\delta_i - 2i\chi_{-})^2 - 4\sigma^z} \right), \quad (9)$$

где введены обозначения $\chi_{\pm} \equiv (\bar{\kappa} \pm \Gamma)/2, \ \delta_i \equiv \equiv \Delta_i - Jk_i$ – отстройка от резонанса, учитывающая также степень *i*-го узла k_i . Далее, анализ рассматриваемых точек удобно провести в пределе $|\delta_i| \simeq 2Jk_i \gg \sqrt{(\kappa_i - \Gamma)^2 + 4\sigma^z}$, т.е. в предположении, что величина Jk_i достаточно велика. Тогда из (9) имеем (ср. с (8))

$$\operatorname{Re}[\omega_1] \simeq -Jk_i + \frac{\sigma^z}{Jk_i}, \quad \operatorname{Im}[\omega_1] \simeq -\bar{\kappa},$$
 (10a)

$$\operatorname{Re}[\omega_2] \simeq -\frac{\sigma^z}{Jk_i}, \quad \operatorname{Im}[\omega_2] \simeq -\Gamma,$$
 (10b)

что хорошо совпадает с численным расчетом на рис. 2. При этом разброс положительных значений собственных частот вдоль оси абсцисс больше у безмасштабной сети, поскольку крайние (справа) синие точки соответствуют хабам.

Рассмотрим теперь точки на рис. 2, расположенные в относительно узкой (вертикальной) полосе значений $-1 < \operatorname{Re}[\omega] < 1$. Это – две группы точек, плотно располагающихся в верхней и нижней части рис. 2, и соответствующих основному массиву СЗ системы (3), составляющих также основу СЗ матрицы смежности τ_{ii} , ср. с [15]. Принципиальным их поведением является тот факт, что собственные значения, соответствующие этим точкам, могут "притягиваться" друг к другу, что связано со свойством неэрмитовости (случайной) матрицы, соответствующей системе (3), ср. с [17]. Точнее говоря, здесь речь идет о неэрмитовой локализации излучения, которая существенно отличается от (эрмитовой) андресоновской локализации, проявляющейся в статистических свойствах спектральных характеристик, см., например, [18]. Такая (неэрмитовая) локализация существенно влияет на статистику спектральных линий; в эксперименте со СЛ продемонстрировано отклонение этой статистики от распределения Вигнера

Рис. 3. (Цветной онлайн) Зависимость (a) – действительной $\text{Re}[\omega]$ и (b) – мнимой, $\text{Im}[\omega]$, частей собственных частот СЛ, представляющего собой случайный граф, как функции десятичного логарифма разности населенностей σ^z . Остальные параметры те же, что и на рис. 2

расстояний между уровнями, характерного физике андерсоновской локализации, см. [4, 19].

Моды, описывающие точки из верхней области на рис. 2, первыми стремятся попасть в полуплоскость, где имеется лазерное усиление, т.е. $Im[\omega] > 0$. Их "мобильность" обусловлена тем, что топологически такие точки соответствуют узлам с небольшим числом связей, или наименее значимым узлам, расположенным преимущественно на периферии графов, см. рис. 1, что также подтверждается экспериментальными результатами, полученными для лазерной генерации СЛ на графах [4].

Для нахождения характерных частот точек, группирующихся возле значения $\omega = 0$, можно воспользоваться выражениями (9), полагая при этом малой величину $\delta_i \simeq \Delta_i - Jk_{\min}$, где k_{\min} – минимальное значение степеней узлов в графе. Численное моделирование показывает, что лазерная генерация возникает, когда точки вверху рис. 2 выходят в полуплоскость вещественных собственных значений, что определяется условием

$$\sigma^z \simeq \bar{\kappa} \Gamma + \frac{\delta_i^2}{4}.$$
 (11)

Если при этом выполняются неравенства $|\delta_i|\chi_-, \delta_i^2, \chi_-^2 \ll 1$, то с помощью (9), (11) получаем

$$\operatorname{Re}[\omega_{1,2}] \simeq \frac{\delta_i}{2}, \quad \operatorname{Im}[\omega_1] = 0, \quad \operatorname{Im}[\omega_2] \simeq -2\chi_+, \quad (12)$$

т.е. частота ω_1 становится вещественной. Заметим, что последним слагаемым (11) в этом пределе можно пренебречь, и тогда условие лазерной генерации при-

Письма в ЖЭТФ том 117 вып. 11-12 2023

обретает весьма универсальный для лазерной физики вид, ср. с [20].

На рисунке 3 представлены зависимости $\operatorname{Re}[\omega]$ и $\operatorname{Im}[\omega]$ для СЛ, как функции от логарифма инверсии населенностей σ^z . Из рисунка 3а видно, что точки, расположенные в пределах полосы значений $-1 < \operatorname{Re}[\omega] < 1$ с увеличением инверсии σ^z приходят в "движение". Собственные частоты, соответствующие этой группе точек на рис. 3а, движутся навстречу друг другу, что характеризует эффект затягивания частоты лазерной генерации к частоте перехода в ДУС ω_0 (в этом случае $\omega \simeq 0$), ср. с [6].

С другой стороны, из рис. За следует, что нижняя (синяя) линия, соответствующая частоте СЗП $\operatorname{Re}[\omega_{P,1}]$ мало меняется с ростом σ^z . Схожим образом ведут себя голубая и желтая линии в верхней части рис. За, соответствующие крайним точкам справа на рис. 2, и узлам, обладающим существенным влиянием в случайной сети, после СЗП, ср. рис. 1а. Таким образом, MP, находящиеся в узлах наибольшего влияния, остаются как бы топологически защищенными, и в процессе затягивания частоты практически не участвуют; мнимая часть соответствующих собственных частот в область усиления $\operatorname{Im}[\omega] > 0$ так и не переходит, см. рис. 3b.

Асимптотическое поведение кривых на рис. Зb при преодолении порога генерации может быть пояснено следующим образом. Пусть система ДУС полностью инвертирована, т.е. $\sigma^z \simeq 1$. В этом случае в (9), если положить $|\delta_i^2 - 4\chi_-^2| \ll 4$, то вещественная комбинация параметров окажется $\delta_i^2 - 4 - 4\chi_-^2 < 0$. Выделив в выражении (9) комплексную и веществен-

14

ные части (см., например, [13]), в этом пределе можно найти $\text{Im}[\omega_1] = 1 - \chi_+ \simeq 0.59$ и $\text{Im}[\omega_2] = -(1 + \chi_+) \simeq -1.41$, что хорошо согласуется с максимальным и минимальным значениями крайних кривых на рис. 3b при $\log[\sigma^z] = 0$ соответственно.

Для безмасштабной сети (рис. 1а) характерные зависимости вещественной и мнимой частей частоты ω от разности населенностей имеют схожий с рис. 3 вид. Существенные отклонения этих зависимостей возникают, когда распределение степеней узлов происходит по степенному закону $p_k \propto k^{-\eta}$ в области $1 < \eta < 2.5$, ср. с [7]. Для такой сети роль хабов сильно возрастает, что отражается на их спектральных характеристиках: они начинают конкурировать с СЗП за "влияние" в сети. В этом случае, как показывает численный расчет, имеет смысл учитывать корреляции между узлами сети более высокого порядка, чем ζ , ср. с (8а). Анализ данного предела нами будет проведен отдельно.

Наконец, в контексте физики СЛ следует обратить внимание на поведение эффективного объема мод, определяемого как (ср. с [6])

$$V_j = \sum_{i=1}^{N} \frac{1}{\max_i [|E_{i,j}|^2]} |E_{i,j}|^2, \qquad (13)$$

где $E_{i,j}$ – амплитуда поля в *i*-м резонаторе для *j*-го собственного вектора системы (3).

Влияние статистических свойств случайной сети на свойства локализации состояний в рассматриваемой задаче показано на рис. 4. А именно, здесь приведена усредненная по большому числу реализаций случайных графов, зависимость среднего объема V, занимающего *j*-й модой СЛ, от вероятности $\mathbf{p} = p_{ij}$, с которой соединена каждая пара из N узлов. Средняя степень узлов в этом случае есть просто $\langle k \rangle = \mathbf{p}(N-1) \simeq \mathbf{p}N$ [9]. Зависимость на рис. 4 рассчитана, начиная со значения $\mathbf{p} = 0.1$, соответствующего $\langle k \rangle \simeq 1$.

В области $0 < \langle k \rangle < 1$ случайная сеть состоит из отдельных, мало связанных друг с другом микрорезонаторов, что приводит к чрезмерным (расчетным) флуктуациям среднего объема мод, минимальное значение которого (согласно определению (13)) равно единице при полной локализации произвольной *j*-й моды.

С увеличением **p** (что означает рост $\langle k \rangle$) степень связности случайного графа увеличивается. Значение **p** = 0.1 на рис. 4 соответствует величине $\langle k \rangle \simeq$ $\simeq 10$, при которой у графа уже имеется гигантская (связанная) компонента. Таким образом, увеличение среднего объема с ростом средней степени узлов $\langle k \rangle$

 $\begin{array}{c}
12 \\
10 \\
8 \\
6 \\
4 \\
2 \\
0 \\
0.01 \ 0.02 \ 0.03 \ 0.04 \ 0.05 \ 0.06 \ 0.07 \ 0.08 \ 0.09 \ 0.1 \\
p
\end{array}$

Рис. 4. (Цветной онлайн) Усредненная по большому числу реализаций случайных графов зависимость среднего объема мод V СЛ от вероятности **р** (точкам соответствуют численно полученные зависимости, а сплошная линия – результат их аппроксимации). Остальные параметры те же, что и на рис. 2

свидетельствует об эффекте перехода от локализованных состояний (при $\langle k \rangle < 1$) к делокализации излучения, присущего случайному графу с гигантской компонентой связности. Выход соответствующей кривой на насыщение связан с исчезновением изолированных узлов в случайном графе, что происходит в пределе $\langle k \rangle \gg 1$, см. рис. 4.

Заметим, что, как показывает численный расчет, поведение среднего объема мод V (т.е. проявление эффекта локализации/делокализации излучения) для рассматриваемого в работе СЛ в зависимости от других материальных параметров СЛ (например, инверсии населенностей), может отличаться от "обычных" СЛ, демонстрирующих (почти экспоненциально) делокализацию излучения в своей структуре [6]. В нашем случае этот эффект зависит не только от статистических свойств графа (матрицы смежности), но и от характерных параметров декогерентности, диссипации и отстройки от резонанса, ср. с [17]. В общем случае, для различных комбинаций этих параметров изучение эффекта локализации/делокализации излучения представляется весьма интересной и не тривиальной (по крайней мере, в теории) задачей, которая будет нами проанализирована отдельно.

В заключение, в работе исследована модель связанных микрорезонаторов, содержащих ДУС, и расположенные в узлах комплексной (случайной, или безмасштабной) сети, ребрами которой являются светопроводящие каналы, связывающие между собой эти микрорезонаторы. Рассматриваемая система демонстрирует основные свойства случайных лазеров, заключающиеся как в локализации, так и в делокализации светового излучения в зависимости от статистических свойств сетевой структуры. В этом аспекте предложенная модель случайного лазера качественно согласуется с недавними экспериментами, выполненными со СЛ, образованным случайной сетью нановолокон. Вместе с тем, рассмотренная нами модель лазера демонстрирует довольно интересные спектральные свойства, заключающиеся в наличии максимального по величине (уединенного) собственного значения Перрона для частоты. Эти свойства связаны с неодинаковостью вклада различных узлов графа (статистических свойств степеней узлов) в процесс лазерной генерации. В последующих публикациях мы собираемся исследовать данные вопросы для более широкого диапазона изменения материальных параметров лазера, чем те, которые были представлены в работе.

Работа выполнена при поддержке гранта Российского научного фонда 23-22-00058 "Когерентные эффекты в двухмерных квантовых материалах с интерфейсом сложных сетей".

- D. Wiersma and S. Diederik, Nature Phys. 4, 359 (2008).
- 2. В.С. Летохов, ЖЭТФ **53**, 1442 (1967).
- C. Hui, Y. Xu Junying, L. Yong, A.L. Burin, E.W. Seeling, X. Liu, and R. P. H. Chang, IEEE J. Sel. Top. Quantum Electron. 9, 111 (2003).
- 4. M. Gaio, D. Saxena, J. Bertolotti, D. Pisignano,

A. Camposeo, and R. Sapienza, Nat. Commun. **10**, 226 (2019).

- L. Sapienza, H. Thyrrestrup, S. Stobbe, P.D. Garcia, S. Smolka, and P. Lodahl, Science **327**, 1352 (2010).
- Ю.В. Юанов, А.А. Зябловский, Е.С. Андрианов, И.В. Доронин, А.А. Пухов, А.П. Виноградов, А.А. Лисянский, Письма в ЖЭТФ 112, 725 (2020).
- А.Ю. Баженов, М.М. Никитина, А.П. Алоджанц, Письма в ЖЭТФ 115, 685 (2022).
- A. P. Alodjants, A. Yu. Bazhenov, A. Y. Khrennikov, and A. V. Bukhanovsky, Sci. Rep. 12, 8566 (2022).
- A.-L. Barabási, *Network Science*, Cambridge University Press (2016).
- A. Dousse, J. Suffczyński, R. Braive, A. Miard, A. Lemaître, I. Sagnes, L. Lanco, J. Bloch, P. Voisin, and P. Senellart, Appl. Phys. Lett. 94, 121102 (2009).
- I.-H. Chen, Y.Y. Lin, Y.-C. Lai, E.S. Sedov, A.P. Alodjants, S.M. Arakelian, and R.-K. Lee, Phys. Rev. A 86, 023829 (2012).
- A. Halu, S. Garnerone, A. Vezzani, and G. Bianconi, Phys. Rev. E 87, 022104 (2013).
- S. Pau, G. Björk, J. Jacobson, Hui Cao, Y. Yamamoto, Phys. Rev. B 51, 14437 (1995).
- A. Y. Bazhenov, D. V. Tsarev, and A. P. Alodjants, Physica B: Condensed Matter. 579, 411879 (2020).
- 15. C. Sarkar and S. Jalan, Chaos 28, 102101 (2018).
- M. E. J. Newman, Mathematics of Networks, in The New Palgrave Dictionary of Economics, Palgrave Macmillan, London (2018), p. 8525.
- 17. J. Feinberg and A. Zee, Phys. Rev. E 59, 6433 (1999).
- M. Sade, T. Kalisky, S. Havlin, and R. Berkovits, Phys. Rev. E 72, 066123 (2005).
- 19. Г.М. Заславский, УФН 129, 211 (1979).
- 20. Г. Хакен, Лазерная светодинамика, Мир, М. (1988).