Home
For authors
Submission status

Archive
Archive (English)
Current
   Volumes 93-112
   Volumes 113-119
      Volume 119
      Volume 118
      Volume 117
      Volume 116
      Volume 115
      Volume 114
      Volume 113
Search
VOLUME 117 (2023) | ISSUE 11 | PAGE 865
Robust and fast quantum state transfer on superconducting circuits
Abstract
Quantum computation attaches importance to high-precision quantum manipulation, where the quantum state transfer with high fidelity is necessary. Here, we propose a new scheme to implement the quantum state transfer of high fidelity and long distance, by adding on-site potential into the qubit chain and enlarging the proportion of the coupling strength between the two ends and the chain. In the numerical simulation, without decoherence, the transfer fidelities of 9 and 11 qubit chain are 0.999 and 0.997, respectively. Moreover, we give a detailed physical realization scheme of the quantum state transfer in superconducting circuits, and discuss the tolerance of our proposal against decoherence. Therefore, our scheme will shed light on quantum computation with long chain and high-fidelity quantum state transfer.