Энергетический спектр β -электронов в безнейтринном двойном β -распаде с учетом возбуждения электронной оболочки атомов

М. И. Криворученко (\mathbb{D}^{+1}) , К. С. Тырин (\mathbb{D}^{+}) , Φ . Ф. Карпешин (\mathbb{D}^{*})

+ Национальный исследовательский центр "Курчатовский институт", 123182 Москва, Россия

*Всероссийский научно-исследовательский институт метрологии имени Д.И.Менделеева (ВНИИМ), 190005 С.-Петербург, Россия

> Поступила в редакцию 29 апреля 2023 г. После переработки 5 мая 2023 г. Принята к публикации 5 мая 2023 г.

В двойном β -распаде электронная оболочка дочернего атома с высокой вероятностью оказывается в возбужденном состоянии, в результате чего энергия, уносимая β -электронами, испытывает сдвиг в сторону меньших величин. В модели Томаса–Ферми и в релятивистском формализме Дирака–Хартри– Фока найдены среднее значение и дисперсия энергии возбуждения электронной оболочки дочернего атома в двойном β -распаде германия $_{32}^{76}$ Ge $\rightarrow _{34}^{76}$ Se^{*} + $2\beta^-$ (+ $2\nu_e$). На основании полученных оценок построена двух-параметрическая модель энергетического спектра β -электронов в безнейтринной моде, учитывающая перераспределение энергии реакции между продуктами распада. С вероятностью 90 % сдвиг суммарной энергии β -электронов не превышает 50 эВ. Средняя энергия возбуждения, однако, на порядок выше и равна ~ 400 эВ, в то время как корень из дисперсии равен ~ 2900 эВ, что объясняется, повидимому, значительным вкладом внутренних электронных уровней в энергетические характеристики процесса. Искажение формы пика $0\nu 2\beta$ -распада необходимо учитывать при анализе данных детекторов с разрешением ~ 100 эВ или выше.

DOI: 10.31857/S1234567823120029, EDN: eutano

В поисках физики за пределами Стандартной Модели (СМ) нейтрино занимают выделенное место. Исследование β -процессов, чувствительных к смешиванию, массе и природе нейтрино (дираковская/майорановская), является перспективным направлением в поиске обобщений СМ [1].

Экспериментальное наблюдение безнейтринного двойного β -распада ($0\nu 2\beta$) однозначно доказало бы существование майрановской массы нейтрино и значительно сузило бы спектр возможностей для обобщения СМ. $0\nu 2\beta$ распад регистрируется по узкому пику при кинетической энергии β -электронов, T, равной энергии распада Q. В β-процессах каналы с электронной оболочкой дочернего атома в основном состоянии не обязательно являются доминирующими [2, 3], что приводит, например, к заметному увеличению вероятности безнейтринного двойного захвата электронов [4-6]. Возбуждения электронной оболочки атомов, так же, как химический сдвиг атомных уровней [7], зависящий от агрегатного состояния вещества, приводят к модификации энергетического спектра, в том числе к размытию и сдвигу $0\nu 2\beta$ пика. Пик при T = Q используется в качестве индикатора $0\nu 2\beta$ распада, его поиски ведутся коллаборациями CUORE [8], EXO [9], КашLAND-Zen [10]. Многоэлектронные моды могут наблюдаться коллаборацией SuperNEMO [11]. Верхний предел на время полураспада ${}^{76}_{32}$ Ge $\rightarrow {}^{76}_{34}$ Se^{*} + $2\beta^-$, установленный коллаборацией GERDA, равен 5.3×10^{25} лет с уровнем достоверности 90 % [12]. Интерпретация данных в терминах майорановской массы нейтрино требует контроля неопределенностей в значении аксиальной константы связи нуклонов [13] и в ядерных матричных элементах [14]. В настоящей работе исследуется влияние возбуждения электронной оболочки атомов на спектр β -электронов в двойном β -распаде.

В β -процессах ядро атома претерпевает изменение заряда $\Delta Z = \pm 1, \pm 2$. Изменение заряда действует на электронную оболочку как внезапное возмущение, "встряхивание", вынуждая электроны дочернего атома с определенной вероятностью переходить на возбужденные уровни (shake up), либо в ионизационные состояния непрерывного спектра (shake off). Результирующий энергетический β -спектр определяется вкладом канала распада, в котором все электроны конечного атома сохраняют свои квантовые числа, а энергия реакции не изменяется, и каналами распада с возбуждением и ионизацией электронной оболоч-

¹⁾e-mail: mikhail.krivoruchenko@itep.ru

ки. Во втором случае эффективная энергия реакции уменьшается, что влияет на форму энергетического спектра.

Для определения энергетического спектра требуется проводить суммирование по всем каналам с учетом измененной энергии реакции и соответствующей многочастичной амплитуды. Волновая функция электронов родительского атома проектируется на волновую функцию электронов дочернего атома в конфигурации, соответствующей определенному возбуждению оболочки. Каждая такая амплитуда требует, вообще говоря, многочастичного численного моделирования. Число открытых каналов, в частности, бесконечно, что является спецификой кулоновской задачи.

Сравнительно просто вычисляется средняя энергия возбуждения оболочки дочернего атома и ее дисперсия в модели Томаса–Ферми и в релятивистском методе Дирака–Хартри–Фока (ДХФ). Эти значения можно далее использовать для построения простейших вероятностных распределений энергии, уносимой β -электронами.

В нерелятивистской теории гамильтониан N электронов в атоме с зарядом ядра Z записывается в виде:

$$\hat{H}_{Z,N} = \sum_{i=1}^{N} \left(\frac{1}{2} \mathbf{p}_{i}^{2} - \frac{Z}{|\mathbf{r}_{i}|} \right) + \sum_{i< j}^{N} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}, \quad (1)$$

где \mathbf{p}_i – импульсы и \mathbf{r}_i – координаты электронов. В настоящей работе используется система атомных единиц $\hbar = m = e = 1$, c = 137, где m – масса электрона, e – заряд протона, c – скорость света. Основное состояние обозначим $|Z, N\rangle$. Полная энергия связи электронов $E_{Z,N}$ является собственным значением $\hat{H}_{Z,N}$.

В $0\nu 2\beta$ -распаде заряд ядра увеличивается на две единицы. Кулоновская добавка к гамильтониану, действующая как внезапное возмущение, переводит состояние $|Z, Z\rangle$ исходного гамильтониана в суперпозицию состояний с определенной энергией гамильтониана

$$\hat{H}_{Z+2,Z} = \hat{H}_{Z,Z} - 2\sum_{i=1}^{Z} \frac{1}{r_i},$$
(2)

где $r_i = |\mathbf{r}_i|$. Средняя энергия Z электронов, образующих оболочку родительского атома, в кулоновском поле ядра с зарядом Z+2 равна $\langle Z, Z | \hat{H}_{Z+2,Z} | Z, Z \rangle = E_{Z,Z} + 2Z^{-1}E_{Z,Z}^{C}$, где $E_{Z,Z}^{C}$ – энергия кулоновского взаимодействия электронов с ядром:

$$E_{Z,Z}^{\mathcal{C}} = -Z \sum_{i=1}^{Z} \langle Z, Z | \frac{1}{r_i} | Z, Z \rangle.$$
(3)

Среднее значение энергии возбуждения электронной оболочки дочернего атома в двойном β -распаде оказывается равным

$$\mathcal{M} = E_{Z,Z} + 2Z^{-1}E_{Z,Z}^{C} - E_{Z+2,Z}.$$
(4)

Энергия связи нейтральных атомов $E_{Z,Z}$ табулирована [15–18], либо находится с помощью программ, предназначенных для расчета структуры электронных оболочек атомов (см., например, [19]). Величина $E_{Z+2,Z}$ отличается от полной энергии связи электронов в нейтральном атоме $E_{Z+2,Z+2}$ на энергию связи двух валентных электронов, которая не превышает 20 эВ. Значения энергии кулоновского взаимодействия $E_{Z,Z}^{C}$, полученные с помощью релятивистского метода ДХФ, можно найти в работе [18].

В качестве второго момента вероятностного распределения найдем дисперсию энергии возбуждения

$$\mathcal{D} = \langle Z, Z | \hat{H}_{Z+2}^2 | Z, Z \rangle - \langle Z, Z | \hat{H}_{Z+2} | Z, Z \rangle^2.$$
(5)

С учетом уравнения (2) и, принимая во внимание, что $E_{Z,N}$ – собственные значения $\hat{H}_{Z,N}$, находим

$$\frac{1}{4}\mathcal{D} = \sum_{i=1}^{Z} \sum_{j=1}^{Z} \langle Z, Z | \frac{1}{r_i} \frac{1}{r_j} | Z, Z \rangle - \langle Z, Z | \sum_{i=1}^{Z} \frac{1}{r_i} | Z, Z \rangle^2.$$

В первом слагаемом матричный элемент $i \neq j$ факторизуется, если пренебречь обменными вкладами: $\langle Z, Z | r_i^{-1} r_j^{-1} | Z, Z \rangle \approx \langle Z, Z | r_i^{-1} | Z, Z \rangle \langle Z, Z | r_j^{-1} | Z, Z \rangle$. Факторизация ведет к сокращению недиагональных членов, в результате чего выражение для дисперсии принимает вид:

$$\frac{1}{4}\mathcal{D} \approx \sum_{i=1}^{Z} \langle Z, Z | \frac{1}{r_i^2} | Z, Z \rangle - \sum_{i=1}^{Z} \langle Z, Z | \frac{1}{r_i} | Z, Z \rangle^2.$$
(6)

Оценка обменных эффектов с использованием нерелятивистских волновых функций электронов в формализме Рутаана–Хартри–Фока [17] показывает, что вклад обменных слагаемых в дисперсию не превышает 10 %.

Заметим, что уравнения (2)–(6) также справедливы в релятивистской теории с гамильтонианом Дирака–Кулона в качестве нулевого приближения и потенциалом Брейта, описывающим взаимодействие электронов в порядке $1/c^2$ [20].

В модели Томаса–Ферми полная энергия связи и энергия кулоновского взаимодействия электронов с ядром для нейтрального атома даются выражениями $E_{Z,Z} = -0.764Z^{7/3}$ и $E_{Z,Z}^{C} = 7E_{Z,Z}/3$ (см., например, [21]). Связь между $E_{Z,Z}$ и $E_{Z,Z}^{C}$ устанавливается теоремой вириала. Средняя энергия возбуждения равна

$$\mathcal{M} = \left(1 + \frac{14}{3Z}\right) E_{Z,Z} - E_{Z+2,Z}.$$
 (7)

Письма в ЖЭТФ том 117 вып. 11-12 2023

В двойном β -распаде германия каждый из двух недостающих 4p электронов связан в селене на 9.752 эВ, сумма первых двух энергий ионизации селена составляет 30.948 эВ [22]. С учетом поправки находим $\mathcal{M} = 382$ эВ.

Плотность электронов в модели Томаса–Ферми выражается через волновые функции атомных оболочек согласно

$$n(\mathbf{r}) = \sum_{i=1}^{Z} \langle Z, Z | \delta(\mathbf{r} - \mathbf{r}_i) | Z, Z \rangle.$$
(8)

Первое слагаемое в уравнении (6) очевидным образом приводится к виду $\int d\mathbf{r}r^{-2}n(\mathbf{r})$. Для вычисления интеграла используется параметризация экранирующей функции нейтральных атомов, приведенная в работе [23]. На малых расстояниях интеграл расходится как $\sim dr/r^{3/2}$. Кроме того, квазиклассическое приближение ограничено расстояниями $1/Z \leq r$. Для численных оценок плотность электронов в интервале от r = 0 до 1/Z считается постоянной и равной n(r = 1/Z).

К второму слагаемому в уравнении (6) применим известное неравенство, согласно которому среднее арифметическое не превосходит среднее квадратичное:

$$\frac{1}{Z}\sum_{i=1}^{Z}\langle Z, Z|\frac{1}{r_i}|Z, Z\rangle^2 \ge \left(\frac{1}{Z}\sum_{i=1}^{Z}\langle Z, Z|\frac{1}{r_i}|Z, Z\rangle\right)^2 = \left(\frac{1}{Z}\int d\mathbf{r}\frac{1}{r}n(\mathbf{r})\right)^2.$$
(9)

Заметим, что правая часть равна $(Z^{-2}E_{Z,Z}^{C})^{2}$. Неравенство определяет верхнюю границу дисперсии:

$$\frac{1}{4}\mathcal{D} \le \frac{1}{4}\bar{\mathcal{D}} = \int d\mathbf{r} \frac{1}{r^2} n(\mathbf{r}) - Z^{-1} \left(\int d\mathbf{r} \frac{1}{r} n(\mathbf{r}) \right)^2.$$
(10)

Для двойного β -распада германия оценка дает $\bar{\mathcal{D}}^{1/2} = 2160\,\mathrm{sB}.$

В релятивистском формализме ДХФ [15] значение первого отрицательного момента в атоме германия равно $\langle r^{-1} \rangle = 4.99$. Расположение основного уровня атома селена относительно германия находится с помощью комплекса программ RAINE [24, 25], реализующих релятивистский метод ДХФ. Подставляя полученные значения в формулу (6), найдем среднее значение энергии возбуждения $\mathcal{M} = 300$ эВ, что качественно согласуется с методом Томаса– Ферми. Значения $E_{Z,Z}$ и $E_{Z,Z}^{C}$, табулированные в работе [18], для двойного β -распада германия дают $\mathcal{M} = 400$ эВ.

Письма в ЖЭТФ том 117 вып. 11-12 2023

Аналогично найдем дисперсию (6), выразив ее через первый и второй отрицательные моменты распределения электронов в атоме германия. Воспользовавшись известными значениями вторых моментов распределения электронов в атомах [16], найдем $\mathcal{D}^{1/2} = 2870$ эВ. Сравнение томас-фермиевского значения 2160 эВ с полученным значением также демонстрирует качественное согласие.

Величины \mathcal{M} и \mathcal{D} заметно выше ожидаемых для каналов, связанных с возбуждением валентных электронов. Вклад дискретных уровней в \mathcal{M} и $\mathcal{D}^{1/2}$, очевидно, не превышает ~ 10 эВ. Сходимость интеграла по непрерывному спектру определяется энергией связи, поэтому вклад континуума в \mathcal{M} и $\mathcal{D}^{1/2}$ сравним с вкладом дискретной части спектра. В то же время в вероятности доминируют возбуждения валентных электронов, так как изменение заряда ядра $\Delta Z = 2$ приводит к значительному, в относительных единицах, изменению экранированного потенциала на границе атома.

Электроны на внутренних орбитах возбуждаются с малой вероятностью, однако имеют большую энергию связи и могли бы давать заметный вклад в среднюю энергию возбуждения и дисперсию. Изменение заряда ядра ΔZ много меньше Z, что позволяет применить теорию возмущений для вычисления вероятности возбуждения К электрона в континуум [26, 27] (см. также [21]). В ведущем порядке вероятность, средняя энергия и средний квадрат энергии перехода равны $\Delta \mathcal{P} = 0.65 \Delta Z^2 / Z^2$, $\Delta \mathcal{M} = 0.66 \Delta Z^2$ и $\Delta \mathcal{D} = 1.87 \Delta Z^2 Z^2$, соответственно. В двойном β распаде германия $\Delta \mathcal{P} = 2.6 \times 10^{-3}$, $\Delta \mathcal{M} = 72$ эВ и $\Delta \mathcal{D} = (2380 \text{ sB})^2$. $\Delta \mathcal{M}$ и $\Delta \mathcal{D}$ имеют порядок величин \mathcal{M} и \mathcal{D} . Вклад K электронов в среднюю энергию возбуждения и дисперсию, следовательно, является существенным.

В β-процессах оболочка родительского атома с конечной, отличной от единицы вероятностью переходит в основное состояние дочернего атома [2, 3, 28]. Для определения соответствующей амплитуды $K_Z =$ = (Se III|Ge) в двойном β -распаде германия волновые функции электронов атома германия |Ge> и волновые функции дочернего иона селена в основном состоянии |Se III) строились с использованием пакета программ GRASP-2018, реализующих релятивистский метод ДХФ [19, 20]. Величина K_Z оказывается чувствительной к используемым приближениям, что обусловлено заметным отличием энергии связи электронов с одинаковыми квантовыми числами на внешних оболочках германия и селена. Вычисления на основе GRASP-2018 приводят к значению $K_Z = 0.575.$

Суммарная кинетическая энергия β -электронов с учетом потери энергии на возбуждение и ионизацию дочернего атома в окрестности T = Q описывается вероятностным распределением

$$dF(T) = \left(K_Z^2 \delta(T - Q) + (1 - K_Z^2) w (1 - T/Q)/Q)\right) dT,$$
(11)

где K_Z^2 – вероятность электронам родительского атома после распада остаться в основном состоянии. Функция w(x) – плотность вероятности энергии возбуждения электронной оболочки дочернего атома $\epsilon = Q - T$, измеренной в единицах Q. Второе слагаемое приводит к размытию пика.

Средняя величина, дисперсия и амплитуда перекрытия K_Z достаточны, чтобы построить простейшее двух-параметрическое вероятностное распределение энергии β -электронов. В широком круге задач, связанных со случайными процессами, используется бета-распределение [29]

$$w(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$
(12)

для величин x, принимающих значения на отрезке $[0,1]; \alpha, \beta > 0$ – свободные параметры. В бета– распределении среднее и средний квадрат равны $m = \alpha/(\alpha + \beta)$ и $m_2 = \alpha(\alpha + 1)/((\alpha + \beta)(\alpha + \beta + 1)),$ соответственно. В рассматриваемом случае $x = \epsilon/Q$. Равенства $(1 - K_Z^2)m = \mathcal{M}/Q$ и $(1 - K_Z^2)m_2 =$ $= (\mathcal{D} + \mathcal{M}^2)/Q^2$ позволяют определить параметры α и β по известным значениям \mathcal{M} , \mathcal{D} и K_Z . В качестве примера рассмотрим изотоп германия-76, использовавшийся в экспериментах коллаборации GERDA. Для $\mathcal{M} = 300$ и 400 эВ и дисперсии $\mathcal{D}^{1/2} = 2870$ эВ находим $\alpha = 0.016, \beta =$ = 74 и $\alpha = 0.029, \beta = 99,$ соответственно. Двухпараметрическое гамма-распределение [29], описывающее случайные величины на полуоси $[0, +\infty)$, также подходит для моделирования, поскольку условие $Q \gg \mathcal{M}, \mathcal{D}^{1/2}$ позволяет распространить интегрирование по $x = \epsilon/Q$ на всю полуось $[0, +\infty)$. В физически интересной области $T \sim Q$ бета- и гаммараспределения практически совпадают в силу $\beta \gg 1$.

При T = Q плотность вероятности сингулярна, но интегрируема. На рисунке 1 для двух приведенных выше наборов параметров α, β показана функция распределения

$$F(T) = K_Z^2 + (1 - K_Z^2) \int_T^Q w(1 - T'/Q) dT'/Q, \quad (13)$$

которая определяет вероятность двум β -электронам иметь энергию, отличную от величины Q не более, чем на Q - T > 0. Для $\mathcal{M} = 300$ эВ с вероятностью 90% энергия β -электронов отклоняется от Q

Рис. 1. Функция распределения вероятности кинетической энергии β -электронов, T, с учетом неполного перекрытия электронных оболочек атомов согласно уравнению (13). Линии 1 и 2 отвечают средней энергии возбуждения электронной оболочки $\mathcal{M} = 300$ и 400 эВ, соответственно, и значению дисперсии $\mathcal{D}^{1/2} = 2870$ эВ. Численные значения характеризуют двойной β -распад германия, Q = 2039.061(7) кэВ – энергия реакции [12]

не более, чем на 1 эВ. Для $\mathcal{M} = 400$ эВ с той же вероятностью отклонение меньше 50 эВ. С увеличением разности Q - T вероятность растет примерно логарифмически, то есть достаточно медленно. Современные детекторы измеряют энергию, выделяемую в двойном β -распаде, с разрешением ~ 1 кэВ, что существенно затрудняет наблюдение эффектов, связанных с возбуждением электронных оболочек. Процессы встряхивания K электронов сопровождаются выделением энергии ~ 10 кэВ, однако, эти процессы маловероятны.

Таким образом, в β -процессах электронная оболочка дочернего атома с высокой вероятностью переходит в возбужденное состояние. В вероятности доминируют переходы валентных электронов на свободные дискретные уровни или в непрерывный спектр. В настоящей работе даны оценки средней энергии возбуждения электронной оболочки дочернего атома \mathcal{M} и ее дисперсии \mathcal{D} в модели Томаса– Ферми и в релятивистском формализме Дирака-Хартри–Фока. Найденные значения $\mathcal{M} \sim 400$ эВ и $\mathcal{D}^{1/2} \sim 2900 \,\mathrm{sB}$ существенно превышают значения, характеризующие процессы с участием валентных электронов. Оценка энергетических параметров перехода К электронов в непрерывный спектр указывает на то, что заметный вклад в среднюю энергию и ее дисперсию дают редкие процессы встряхивания электронов, заселяющих внутренние орбиты. При увеличении разрешения детекторов до $\sim 100 \, \mathrm{sB}$ искажение формы пика в распаде $0\nu 2\beta$, вызванное возбуждением электронных оболочек атомов, становится существенным для анализа данных наблюдений.

Работа выполнена при поддержке гранта # 23-22-00307 Российского научного фонда.

- S. Bilenky, Introduction to the Physics of Massive and Mixed Neutrinos, 2nd ed., Lecture Notes in Physics, Springer-Verlag, Berlin (2018), v. 947.
- W. Bambynek, H. Behrens, M. H. Chen, B. Crasemann, M. L. Fitzpatrick, K. W. D. Ledingham, H. Genz, M. Mutterer, and R. L. Intemann, Rev. Mod. Phys. 49, 77 (1977).
- M. I. Krivoruchenko and K. S. Tyrin, Eur. Phys. J. A 56, 16 (2020).
- F. F. Karpeshin, M. B. Trzhaskovskaya, and L. F. Vitushkin, Yad. Fiz. 83, 344 (2020) [Phys. At. Nucl. 83, 608 (2020)].
- F. F. Karpeshin and M. B. Trzhaskovskaya, Yad. Fiz. 85, 347 (2022) [Phys. At. Nucl. 85, 474 (2022)].
- F. F. Karpeshin and M. B. Trzhaskovskaya, Phys. Rev. C 107, 045502 (2023).
- I. Lindgren, Journal of Electron Spectroscopy and Related Phenomena 137–140, 59 (2004).
- K. Alfonso, D. R. Artusa, F. T. Avignone et al. (CUORE Collaboration), Phys. Rev. Lett. **115**, 102502 (2015).
- G. Anton, I. Badhrees, P.S. Barbeau et al. (EXO-200 Collaboration), Phys. Rev. Lett. **123**, 161802 (2019).
- A. Gando, Y. Gando, T. Hachiya et al. (KamLAND-Zen Collaboration), Phys. Rev. Lett. **117**, 082503 (2016); Addendum: Phys. Rev. Lett. **117**, 109903 (2016).
- R. Arnold, C. Augier, J.D. Baker et al. (NEMO-3 Collaboration), Phys. Rev. D 92, 072011 (2015).
- 12. The GERDA Collaboration, Nature 544, 47 (2017).
- 13. J. T. Suhonen, Front. Phys. 5, 55 (2017).
- F. Šimkovic, A. Faessler, V. Rodin, P. Vogel, and J. Engel, Phys. Rev. C 77, 045503 (2008).

- C. C. Lu, T. A. Carlson, F. B. Malik, T. C. Tucker, and C. W. Nestor, Jr., At. Data Nucl. Data Tables 3, 1 (1971).
- J.P. Desclaux, At. Data Nucl. Data Tables 12, 311 (1973).
- E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974).
- K.-N. Huang, M. Aoyagi, M. H. Chen, B. Grasemann, and H. Mark, At. Data Nucl. Data Tables 18, 243 (1976).
- K. G. Dyall, I. P. Grant, C. T. Johnson, F. A. Parpia, and E. P. Blummer, Comput. Phys. Commun. 55, 425 (1989).
- I. P. Grant, Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation, Springer Science + Business Media, N.Y. (2007).
- L. D. Landau and E. M. Lifschitz, Quantum Mechanics: Non-relativistic Theory. Course of Theoretical Physics, 3rd ed., Pergamon, London (1977), v. 3.
- A. Kramida and Yu. Ralchenko, J. Reader and NIST ASD Team (2022), NIST Atomic Spectra Database (ver. 5.10), https://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg, MD; DOI: https://doi.org/10.18434/T4W30F.
- J. C. Mason, Math. Proc. Cambridge Philos. Soc. 84, 357?360 (1964).
- I. M. Band, M. B. Trzhaskovskaya, C. W. Nestor Jr., P. O. Tikkanen, and S. Raman, At. Data Nucl. Data Tables 81, 1 (2002).
- I. M. Band and M. B. Trzhaskovskaya, At. Data Nucl. Data Tables 35, 1 (1986).
- 26. E. L. Feinberg, J. Phys. (USSR) 4, 423 (1941).
- 27. А. Мигдал, ЖЭТФ **11**, 207 (1941) [A. Migdal, J. Phys. Acad. Sci. USSR **4**(1–6), 449 (1941)].
- Z. Ge, T. Eronen, K.S. Tyrin, J. Kotila et al., Phys. Rev. Lett. **127**, 272301 (2021).
- В. С. Королюк, Н.И. Портенко, А.В. Скороход, А.Ф. Турбин, Справочник по теории вероятностей и математической статистике, Наука М. (1985), 640 с.