
Pis’ma v ZhETF, vol. 118, iss. 1, pp. 37 – 38 © 2023 July 10

Magnetism, non-Fermi-liquid behavior and deconfinement in Kondo

lattices

V. Yu. Irkhin
1)

M.N.Mikheev Institute of Metal Physics, 620077 Ekaterinburg, Russia

Submitted 22 May 2023

Resubmitted 24 May 2023

Accepted 24 May 2023

DOI: 10.31857/S1234567823130086, EDN: gbougq

Anomalous f -systems, which are usually described
as Kondo lattices, show unusual behavior of thermo-
dynamic and transport properties, e.g., large electron
specific heat, γ = C/T ∼ 1/TK (TK the Kondo temper-
ature) or even a non-Fermi-liquid behavior. At the same
time, a number of such systems with frustrated mag-
netic structures demonstrate spin-liquid features with
γ ∼ 1/J where J is the Heisenberg exchange interac-
tion.

A scaling theory of the Kondo lattices [1, 2] demon-
strates that during the scaling procedure the process of
magnetic moment compensation terminates somewhere
at the boundary of the strong coupling region, which
can results in the formation of a finite (although pos-
sibly small) saturation moment. Thus a unified energy
scale is established, both the effective spin-fluctuation
frequency (i.e., J) and TK being strongly renormalized,
as well as frustration parameters [3].

In Ref. [4], a mean-field description of the magnetic
ground state of the Kondo lattices was proposed. Here
we generalize this approach and formulate the effective
hybridization model describing the competition of mag-
netic and non-magnetic Kondo and spin-liquid states.
We also go beyond the mean-field theory by taking into
account fluctuations contribution, including gauge field
ones.

Unlike previous works [5], we use the formulation
by Coleman and Andrei [6] which reduces the s − f
exchange coupling to the effective hybridization V and
yields the correct value of the Kondo temperature TK .
As for Heisenberg term, we use the representation of
pseudofermions f †

iσ. In the spin-liquid state, they are es-
sentially operators of spinons – neutral fermions which
have dispersion on the scale J , so that the spinon Fermi
surface is formed. The single-occupancy constraint can
be enforced by a gauge field. The presence of hy-
bridization results in the formation of a unified “large”
Fermi surface including both conduction electrons and
f -states.
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To take into account fluctuations effects, we use the
slave-particle representation fiσ → fiσbi, the effective
hybridization being determined by the boson conden-
sate b0 = 〈b〉. Fluctuations can destroy the condensate
picture, so that b0 vanishes. Then we obtain a spin-
liquid-like state where spinon and electron Fermi sur-
faces are distinct, i.e., a “small” Fermi surface. This state
was called fractionalized Fermi-liquid (FL∗) [7].

In the quantum critical regime, a topological trans-
formation from large Fermi surface (Kondo lattice state)
to small Fermi surface is possible, which can be ac-
companied by magnetic-order instability. A topological
“Kondo breakdown” transition can occur between FL∗

and “usual” heavy Fermi liquid (FL) states. In the spin-
liquid state, gauge field fluctuations can play a role in
thermodynamics and heat transport even in the insulat-
ing phase (in the absence of conduction electrons, but
in the presence of the spinon Fermi surface). In par-
ticular, there occurs a spinon contribution to specific
heat. This contribution retains in FL∗ state and in FL
state near the topological transition. As demonstrate
the calculation [7], the specific heat coefficient γ = C/T
diverges logarithmically at T → 0 in the FL∗ phase,
which means the non-Fermi-liquid behavior (in the 2d
case, C(T ) ∼ T 2/3). At approaching the transition from
the FL side, we have γ ∼ ln(1/b0).

In the quantum critical regime, the fluctuations of
order parameter field b yield additional contributions to
thermodynamic properties. Unlike gauge field (neutral
spinon) ones, they contribute also to electronic trans-
port. Due to mismatch of electron and spinon Fermi
surfaces, the decay of bosons into particle-hole pairs be-
comes possible above an energy E∗, which can be small
if the distance between the two Fermi surfaces is small.
Then at T > E∗ one obtains a T lnT contribution to
specific heat. Besides that, the fluctuation scattering re-
sults in the T lnT dependence of resistivity R(T ) in
this regime [8]. For T < E∗, the behavior of thermo-
dynamic and transport properties depends on that the
Fermi surfaces intersect or not [9]. In the first case we
have R(T ) ∼ T 3/2 and R(T ) ∼ T lnT in 3d and 2d
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cases, respectively. In the FL states, this contribution is
cut at the Kondo gap of order of TK , which is related
to the boson condensate, TK ≃ πρV 2b20 in the vicinity
of the critical point.

The FL∗ state with the spinon Fermi surface should
be unstable with to a broken-symmetry antiferromag-
netic (AFM) ordering (spin-density wave, SDW state)
with the wavector Q [7]. The exotic AFM order on the
spinon Fermi surface is called AFM∗ or SDW∗ phase.
The presence of an SDW∗ condensate does not cause
a radical change in the structure of the gauge fluctu-
ation in comparison with the FL* state: the spinons
remain deconfined and coupled to a gapless U(1) gauge
field. The gauge field excitations coexist with the gap-
less Goldstone magnon mode and with a Fermi surface
of conduction electrons. Because of the broken trans-
lational symmetry, there is no clear difference between
small and large Fermi surfaces now [7].

With increasing s− d(f) exchange coupling, the de-
confined phase with small Fermi surface can pass first
into usual itinerant AFM state with a large Fermi sur-
face volume, and then into FL state. The spinon Fermi
surface of the FL∗-phase is expected to evolve smoothly
into the FL region in some vicinity of the topological
transition, so that the SDW order can continue to FL
in the ground state, as discussed in [1]. Thus there is
no sharp transition between the FL and FL∗ regions,
and there is instead expected to be a large intermediate
quantum-critical region [7].

The contribution of transverse spin fluctuation to
conduction-electron self-energy reads

Σ
(2)
k (E) = V 2S

∑

q

(uq − vq)
2 ×

×

(

1− nk+q +Nq

E − ǫk+q − ωq

+
nk+q +Nq

E − ǫk+q + ωq

)

, (1)

where nk = 〈f †
kfk〉 and Nq = 〈β†

qβq〉 are Fermi and
Bose functions of spinons and magnons, ǫk the spinon
spectrum, uq, vq the Bogoliubov transformation factors.

The contribution (1) is similar to that of the usual
perturbation theory in the s − d(f) exchange model
[10], but works on the scale of the spinon bandwidth.
In the FL∗ state the hybridization V plays the role
of the s − f exchange parameter and mediates the
RKKY (Ruderman–Kittel–Kasuya–Yosida) type inter-
action between f -states. The contribution (1) survives
in the FL state where a unified electron-spinon Fermi
surface arises and a correlated s− f band with narrow
density-of-states peaks is formed. However, in such a
situation the spectrum ǫk and prefactor in (1) change.

In the case of weak antiferromagnetism we have an
energy scale T ∗ = (∆/vF )J (∆ is the AFM splitting of
the spectrum), so that for T ∗ < T < J the transitions
between AFM subbands become singular. It should be

noted that the splitting and magnon frequency are, gen-
erally speaking, renormalized in a different way – both
in scaling equations [1] and due to frustrations. This fa-
vors formation the scale T ∗ even in the absence of the
small parameter of the s− f exchange coupling I.

In the general d = 3 case we have ImΣ(2)(E) ∝ E2

for T ∗ < T < J . For d = 2 ImΣ(E) is linear in |E|. The
corresponding intersubband correction to specific heat
can be derived similar to [10]. In the 2d (or “nesting”
3d) case the integral in (1) is logarithmically divergent
at q → Q and the divergence is cut at max(T, T ∗), so
that

δCinter(T ) ∝ T ln
ω̄

max(T, T ∗)
. (2)

Thus for T > T ∗ we obtain the T lnT -dependence.
The result (2) holds also in the case of frustrated (2d-
like) magnon spectrum. For the 2d magnon spectrum or
“nested” 3d situation one obtains for spin-wave resistiv-
ity

R(T ) ∝ T ln(1 − exp(−T ∗/T )) ≃ T ln(T/T ∗).

The role of magnetic fluctuations depends on the
relation between J and TK (in frustrated and low-
dimensional systems with strong short-range order the
scale J can be considerably larger than TN ). Similar
to [4], we can find singular corrections to sublattice mag-
netization owing to spin-wave damping, which may be
of order of unity.
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