Поиск солнечных аксионов с энергией 8.4 кэВ, излучаемых в M1-переходе ядер ¹⁶⁹Tm

А. В. Дербин¹⁾, И. С. Драчнев, В. Н. Муратова, Д. А. Семенов, М. В. Трушин, Е. В. Унжаков

Петербургский институт ядерной физики им. Б. П. Константинова

Национальный исследовательский центр "Курчатовский институт", 188300 Гатчина, Россия

Поступила в редакцию 28 июня 2023 г. После переработки 29 июня 2023 г. Принята к публикации 29 июня 2023 г.

Проведен поиск аксионов с энергией 8.4 кэВ, излучаемых в М1-переходе ядер ^{169}Tm на Солнце, с помощью реакции резонансного поглощения ядрами ^{169}Tm на Земле: $A + ^{169}\text{Tm} \rightarrow ^{169}\text{Tm}^* \rightarrow ^{169}\text{Tm} + (\gamma, e)$ (8.4 кэВ). В качестве детектора использовался кристалл тулиевого граната $\text{Tm}_3\text{Al}_5\text{O}_{12}$, который работал как болометрический детектор. Вычислен поток монохроматических 8.4 кэВ аксионов и получены новые ограничения на константы связи аксиона с нуклонами и массу аксиона в KSVZ- и DFSZ-моделях, которые составляют $m_A^{KSVZ} \leq 141$ эВ и $m_A^{DFSZ} \leq 244$ эВ (90% у.д.) соответственно.

DOI: 10.31857/S1234567823150028, EDN: hweece

1. Введение. Вероятность рождения и регистрации аксионов, гипотетических нейтральных псевдоскалярных частиц, введенных в теорию для объяснения отсутствия СР-нарушения в сильных взаимодействиях [1–3] и являющихся хорошо мотивированными кандидатами на роль частиц темной материи, определяется эффективными константами связи аксионов с фотонами $g_{A\gamma}$, электронами g_{Ae} и нуклонами g_{AN} . Основными реакциями, предлагаемыми для детектирования, являются конверсия аксионов в фотоны в магнитном поле или в поле ядра, распад аксиона на два фотона, комптоновская конверсия и аксиоэлектрический эффект.

В данной работе рассматривается только один процесс – излучение и поглощение аксионов в ядерном магнитном переходе, при этом излучение аксионов происходит на Солнце, а поглощение на Земле. Чувствительность эксперимента определяется только константами связи аксиона с нуклонами. Эксперименты подобного рода были проведены ранее с ядрами ⁵⁷Fe [4–6], ⁷Li [7–9] и ⁸³Kr [10–12].

После того как первоначальная модель "стандартного" PQWW-аксиона [1–3] была надежно закрыта серией экспериментов, появились два класса моделей "невидимого" аксиона – это модели KSVZ-аксиона (адронный аксион) [13, 14] и DFSZ-аксиона [15, 16]. Масса аксиона m_A и его константа распада f_A в обоих моделях связаны с такими же характеристиками π^0 -мезона: $m_A f_A \approx m_\pi f_\pi (z^{1/2}/(1+z))$, где $z = m_u/m_d$ – отношение масс легких кварков. В численном виде соотношение m_A и f_A выглядит следующим образом [17, 18]:

$$m_A = 5.69(5) \left(\frac{10^6 \ \Gamma \Im B}{f_A}\right) \ \Im B. \tag{1}$$

Ограничения на массу аксиона возникают как следствие экспериментальных ограничений на константы связи $g_{A\gamma}$, g_{Ae} и g_{AN} , которые, в свою очередь, являются модельно зависимыми величинами.

Монохроматические аксионы должны испускаться в переходах магнитного типа в ядрах ⁵⁷Fe (14.4 кэВ) и ⁸³Кг (9.4 кэВ), низколежащие уровни которых возбуждаются за счет высокой (1.3 кэВ) температуры в центре Солнца. Целью данной работы является поиск монохроматических аксионов с энергией 8.4 кэВ, излучаемых в М1-переходе в ядрах ¹⁶⁹Tm, с помощью реакции резонансного поглощения, приводящей к возбуждению первого ядерного уровня ¹⁶⁹Tm. Гамма- и рентгеновские кванты и конверсионные и Ожэ электроны, возникающие при разрядке возбужденного уровня, могут быть зарегистрированы. Вероятность испускания и последующего поглощения аксионов зависит только от константы связи с нуклонами и пропорциональна g_{AN}^4 . Поиск аксионов с энергией 8.4 кэВ проводится впервые.

Использовать изотоп ¹⁶⁹Tm для поиска солнечных аксионов с непрерывным спектром, обусловленным константами $g_{A\gamma}$ (аксионы Примакова) и g_{Ae} (тормозные и комптоновские процессы), было предложено и реализовано в работах [19, 20].

 $^{^{1)}\}text{e-mail: Derbin_AV@pnpi.nrcki.ru}$

Наиболее известны эксперименты по поиску солнечных аксионов, возникающих в результате конверсии тепловых фотонов в поле солнечной плазмы. Основываясь на взаимодействии аксиона с фотоном $g_{A\gamma}$, аксионы пытаются обнаружить с помощью обратной конверсии в лабораторном магнитном поле [21, 22] или в поле кристалла [23, 24]. Ожидаемая скорость счета фотонов в данных экспериментах пропорциональна $g_{A\gamma}^4$.

Подробные обзоры теоретических и экспериментальных работ по аксионной тематике представлены в [18].

2. Поток аксионов с энергией 8.4 кэВ от Солнца. Первый уровень ядра ¹⁶⁹Tm имеет энергию $E_{\gamma} = 8.410$ кэВ, спин и четность $J^{\pi} = 3/2^+$, примесь Е2-перехода составляет 0.11 % ($\delta = 0.033$) [25]. Для экспериментов проводимых по схеме мишеньдетектор, когда конверсионные и Ожэ-электроны поглощаются мишенью, важным является коэффициент электронной конверсии. Для изучаемого перехода он составляет $e/\gamma = 264$ ($\eta = 3.79 \times 10^{-3}$) [25].

Поток аксионов от Солнца зависит от энергии E_{γ} и времени жизни уровня τ_{γ} , от распространенности изотопа ¹⁶⁹Tm на Солнце (N(r)), распределения температуры внутри Солнца (T(r)), а также от отношения вероятности испускания аксиона и фотона ω_A/ω_{γ} [4, 26]:

$$\Phi_A(r) = \frac{N}{\tau_\gamma} \frac{2 \exp(-E_\gamma/kT)}{(1 + 2 \exp(-E_\gamma/kT))} \frac{\omega_A}{\omega_\gamma}.$$
 (2)

Вследствие эффекта Доплера, вызванного тепловым движением ядер в Солнце, спектр аксионов представляет собой гауссово распределение с дисперсией $\sigma(T) = E_{\gamma}(kT(r)/M)^{1/2}$, где M – масса ядра ¹⁶⁹Tm. Полный спектр аксионов является суммой гауссианов с дисперсиями $\sigma(T)$, определяемыми температурой в точке испускания аксиона на Солнце.

Наиболее интенсивный поток монохроматических аксионов от Солнца связан с М1-переходом с первого возбужденного уровня на основное состояние ядра ⁵⁷Fe. Это обусловлено, в первую очередь, высокой распространенностью железа на Солнце. Тулий имеет на 7 порядков меньшую концентрацию, однако такие факторы как более низкая энергия перехода E_{γ} , меньшая величина доплеровского уширения $\sigma(T)$ и 100 % распространенность изотопа ¹⁶⁹Tm ведут к увеличению ожидаемой скорости счета аксионов.

Принципиальное отличие M1-перехода в ядре 169 Tm от аналогичных переходов в ядрах 57 Fe и 83 Kr состоит в том, что это, в основном, протонный переход. Это особенно важно для поиска KSVZ-аксионов, у которых константа связи аксиона с нейтроном ма-

ла. Более того, для протонного перехода отношение ω_A/ω_{γ} не обращается в нуль, как это может быть в случае нейтронных переходов.

Мы вычислили поток аксионов для стандартной солнечной модели BS05 [27] с высокой металличностью [28] как сумму вкладов от отдельных сферических слоев толщиной dr, в которых использовались конкретные значения температуры T и концентрации тулия N(r). На рисунке 1 показана зависимость интегрального потока аксионов из слоя r^2dr от радиуса r. Можно видеть, что 90% потока аксионов излучается внутри $r \leq 0.2R_{\odot}$.

Рис. 1. Распределение температуры (T, °К, кривая 1) и концентрации атомов ¹⁶⁹Tm (N, в единицах 10⁶ см⁻³, кривая 2) в зависимости от радиуса r. Поток аксионов из слоя $r^2 dr$ для значения $\omega_A/\omega_{\gamma} = 4 \times 10^{-14}$ и $dr = 5 \times 10^{-3} R_{\odot}$ (Φ , см⁻² с⁻¹ кэВ⁻¹, кривая 3). На вставке показан энергетический спектр солнечных аксионов со средней энергией 8.41 кэВ

Дифференциальный спектр представляет собой сумму отдельных гауссианов. Каждый вклад характеризовался величиной доплеровского уширения $\sigma(T)$. Суммарный энергетический спектр аксионов показан на вставке рис. 1, он хорошо описывается гауссовой функцией с дисперсией $\sigma = 0.78$ кэВ. Дифференциальный поток в максимуме распределения при *E* = 8.41 кэВ оказывается равным:

$$Φ(E) = 3.73 \times 10^{22} (ω_A/ω_γ) \text{ см}^{-2} \text{ c}^{-1} \text{ кэB}^{-1}.$$
 (3)

Ширина полученного распределения существенно превышает энергию ядра отдачи $(2.2 \times 10^{-7} \text{ sB})$, собственную ширину ядерного уровня ($\Gamma = 1.12 \times 10^{-7} \text{ sB}$) и доплеровскую ширину уровня ядер ¹⁶⁹Tm мишени $(3.3 \times 10^{-3} \text{ sB})$, даже находящуюся при температуре T = 300 K.

Отношение вероятностей аксионного и электромагнитного переходов (ω_A/ω_γ) было вычислено в работах [29, 30]:

$$\frac{\omega_A}{\omega_\gamma} = \frac{1}{2\pi\alpha(1+\delta^2)} \left[\frac{g_{AN}^0 \beta^* + g_{AN}^3}{(\mu_0 - 0.5)\beta^* + \mu_3 - \eta} \right]^2 \left(\frac{p_A}{p_\gamma} \right)^3,\tag{4}$$

где p_{γ} и p_A – импульсы фотона и аксиона, δ – отношение вероятностей Е2 и М1 переходов, $\mu_0 \approx 0.88$ и $\mu_3 \approx 4.71$ – изоскалярный и изовекторный ядерные магнитные моменты, β^* и η – параметры, которые определяются конкретными ядерными матричными элементами. Для ядра ¹⁶⁹ Tm с нечетным числом нуклонов и неспаренным протоном параметры β^* и η , в одночастичном приближении, можно оценить как $\beta^* = 1$ и $\eta = 0.5$ [26].

Изоскалярная g_{AN}^0 и изовекторная g_{AN}^3 части константы связи аксиона с нуклонами являются модельно зависимыми величинами. Они могут быть выражены через эффективные константы связи аксиона с протонами C_p и нейтронами C_n [31, 32]:

$$g_{AN}^{0} = (M_N/2f_A)(C_p + C_n);$$

$$g_{AN}^{3} = (M_N/2f_A)(C_p - C_n),$$
(5)

где M_N – масса нуклона. Эффективные константы C_p и C_n , в свою очередь, зависят от констант связи аксиона с кварками [18, 31]. Вычисления, выполненные в [31], дают для KSVZ модели следующие значения $C_p^{KSVZ} = -0.47(3)$ и $C_n^{KSVZ} = 0.02(3)$. Как было отмечено ранее, взаимодействие аксиона с нейтроном сильно подавлено. Для DFSZ аксион значения C_p и C_n зависят от дополнительного параметра β [31]: $C_p^{DFSZ} = -0.617 + 0.435 \sin^2 \beta \pm 0.025$ и $C_n^{DFSZ} = 0.254 - 0.414 \sin^2 \beta \pm 0.025$. Мы использовали значения $C_p^{DFSZ} = 0.2712$ и $C_n^{DFSZ} = 0.1248$ при большом угле $\tan \beta = 10$, найденные в [32]. Используя отношение (1), можно выразить изоскалярную и изовекторную константы g_{AN}^0 и g_{AN}^3 через массу аксиона m_A .

3. Скорость поглощения 8.4 кэВ аксионов ядрами ¹⁶⁹Tm. Сечение резонансного поглощения

аксионов $\sigma(E_A)$ с энергией E_A дается выражением, аналогичным выражению для сечения резонансного поглощения γ -квантов с поправкой на отношение ω_A/ω_{γ} :

$$\sigma(E_A) = 2\sqrt{\pi}\sigma_{0\gamma} \exp\left[-\frac{4(E_A - E_{M1})^2}{\Gamma^2}\right] \left(\frac{\omega_A}{\omega_\gamma}\right), \quad (6)$$

где $\sigma_{0\gamma} = 2.61 \times 10^{-19} \, \text{см}^2$ – максимальное сечение резонансного поглощения гамма-квантов ядром ^{169}Tm .

Полное сечение поглощения аксионов может быть получено путем интегрирования выражения (6) для $\sigma(E_A)$ по спектру солнечных аксионов. Интегрирование узкого распределения (6) по широкому спектру аксионов дает значение, близкое $\Phi(E_{M1})$ в выражении (3). Ожидаемая скорость резонансного поглощения солнечных аксионов ядром ¹⁶⁹Tm равна:

$$R_A = \pi \sigma_{0\gamma} \Gamma \Phi_A(E_{M1}) (\omega_A / \omega_\gamma)^2 \tag{7}$$

и может быть представлена в численном виде как:

$$R_A = 3.35 \times 10^{-6} (\omega_A/\omega_\gamma)^2 \,\mathrm{c}^{-1}.$$
 (8)

Отношение ω_A/ω_{γ} зависит от констант связи g_{AN}^0 и g_{AN}^3 или C_p и C_n . В результате, скорость поглощения аксионов R_A ядром ¹⁶⁰Tm, выраженная в единицах атом⁻¹ с⁻¹, в модельно независимом виде, т.е. зависящем только от значений констант связи, будет выглядеть как:

$$R_A = 3.55 \times 10^{-6} (g_{AN}^0 + g_{AN}^3)^4 (p_A/p_\gamma)^6.$$
 (9)

Используя отношения, связывающие константы g_{AN}^0 и g_{AN}^3 с массой аксиона m_A в KSVZ- и DFSZмоделях, скорость поглощения аксионов ядром ¹⁶⁹Tm в сутки можно представить как функцию массы аксиона m_A , последняя выражена в единицах эВ:

$$R_A^{KSVZ} = 4.88 \times 10^{-30} m_A^4 (p_A/p_\gamma)^6,$$

$$R_A^{DFSZ} = 5.41 \times 10^{-31} m_A^4 (p_A/p_\gamma)^6.$$
(10)

Общее число зарегистрированных аксионов зависит от числа ядер ¹⁶⁹Tm в мишени, времени измерений и эффективности регистрации детектора, а вероятность наблюдения пика с энергией 8.41 кэВ определяется уровнем фона экспериментальной установки.

4. Экспериментальная установка. Для регистрации реакции резонансного поглощения солнечных аксионов использовался детектор на основе кристалла тулиевого граната $Tm_3Al_5O_{12}$, который был специально изготовлен для данного эксперимента и работал как низкотемпературный болометр [33].

Кристалл был выращен в институте общей физики им. А. М. Прохорова РАН. Детектор имел форму куба со стороной 10 мм, масса кристалла составляла 8.18 г, а масса тулия 4.97 г.

Для проведения измерений детектор был размещен в вакуумном криостате в институте физики М. Планка и охлаждался до температуры около 10 мК. Установка была расположена на поверхности земли. Для калибровки использовался стандартный калибровочный источник ⁵⁵Fe. Энергетическое разрешение, полученное для линии с энергией 5.9 кэВ (K_{α 12} Mn), составило σ = FWHM/2.35 = = 0.4 кэВ. Вследствии большого коэффициента электронной конверсии e/γ эффективность регистрации пика с энергией 8.4 кэВ с высокой точностью равна $\epsilon \simeq 1.0$. Подробно характеристики детектора и экспериментальная установка описаны в работах [33, 34].

Как было отмечено выше, при разрядке возбужденного уровня ¹⁶⁹Tm испускаются конверсионные и Ожэ электроны, рентгеновские и γ -кванты. Изотоп ¹⁶⁹Tm входит в состав детектора, поэтому эффективность регистрации резонансного поглощения в $e/\gamma = 260$ раз выше по сравнению с нашими предыдущими экспериментами, выполненными по схеме "мишень-детектор" [19, 20].

5. Полученные результаты. Измерения проводились 3.86 суток живого времени, полученный спектр показан на рис. 3 в [34]. Уровень фона в районе пика с энергией 8.4 кэВ составил 25 соб./0.1 кэВ сут.

Измеренный спектр в интервале (4.6–20) кэВ подгонялся функцией для непрерывного фона с 4 параметрами и 4-мя гауссовыми пиками $K_{\alpha 1}, K_{\alpha 2}, K_{\beta}$ рентгеновских линий Mn от калибровочного источника и ожидаемым аксионным пиком S_4 с энергией 8.4 кэВ. Положение и дисперсия гауссиана, описывающего аксионный пик, были привязаны к параметрам пика $K_{\alpha 1}$ марганца. "Аксионный" пик с энергией 8.4 кэВ статистически не проявился.

Для установления верхнего предела на число отсчетов в пике использовался стандартный метод нахождения профиля $\chi^2(S_4)$ и функции вероятности $P(\chi^2(S_4))$. Подгонка позволила установить верхний предел на число событий в пике $S_{\text{lim}} = 128$ событий для 90 % у.д. [34]. Определенный верхний предел на число событий в пике с энергией 8.41 кэВ позволяет ограничить константы взаимодействия аксиона C_p или $(g_{AN}^0 + g_{AN}^3)$ и массу аксиона m_A в соответствии с выражениями (5), (9) и (10).

Ожидаемое число зарегистрированных аксионов составляет:

$$S_A = R_A N_{169Tm} T \epsilon \le S_{\rm lim},\tag{11}$$

Письма в ЖЭТФ том 118 вып. 3-4 2023

где $N_{169Tm} = 1.77 \times 10^{22}$ – число ядер ¹⁶⁹Tm в мишени, $T = 3.34 \times 10^5$ – время измерений в секундах и $\epsilon = 1.0$ – эффективность регистрации.

В соответствие с выражением (9), при условии $(p_A/p_{\gamma})^6 \cong 1$, что справедливо для масс аксиона $m_A \leq 2$ кэВ, получаем ограничение:

$$|(g_{AN}^0 + g_{AN}^3)| \le 8.89 \times 10^{-6}, \tag{12}$$

для 90% у.д. Ограничение (12) является модельнонезависимым ограничением на константы связи аксиона или любой другой псевдоскалярной аксионоподобной частицы с нуклонами. Используя выражения (10), легко получить ограничения на массу аксиона в двух разных моделях, которые оказываются следующими: $m_A^{KSVZ} \leq 141$ эВ в KSVZ-модели и $m_A^{DFSZ} \leq 244$ эВ в DFSZ-модели.

Результаты следует сравнить с пределами на массу аксиона, полученными в экспериментах по поиску резонансного поглощения солнечных аксионов другими ядрами. В отмеченных выше работах с ядрами 57 Fe [4–6], ⁷Li [7–9], и 83 Kr [10, 11] получены верхние пределы на массу для KSVZ-аксиона, которые составляют величины 145 эВ, 13.9 кэВ и 65 эВ, соответственно.

Более строгие астрофизические ограничения на константу связи аксиона с протоном основаны на изменении температуры нейтронных звезд в присутствии аксионного излучения и составляют в KSVZ-модели – $C_p^2 \leq (1-6) \times 10^{-17}$ [35–37].

6. Заключение. Вычислен поток монохроматических солнечных аксионов с энергией 8.41 кэВ, связанный с разрядкой первого ядерного уровня ¹⁶⁹Tm, возбуждаемого за счет высокой температуры Солнца. Проведен поиск резонансного поглощения данных аксионов ядрами ¹⁶⁹Tm, приводящего к возбуждения первого ядерного уровня ¹⁶⁹Tm. Для регистрации частиц, возникающих при разрядке уровня, использовался кристалл Tm₃Al₅O₁₂, работающий как низкотемпературный болометр. В результате получены новые верхние пределы на массу аксиона в KSVZ-и DFSZ-моделях, которые, для 90 % у.д., составляют $m_A \leq 141$ эВ и $m_A \leq 244$ эВ соответственно.

Работа выполнена при поддержке Российского научного фонда, проект # 22-22-00017.

- R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977).
- 2. S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).
- 3. F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).
- 4. S. Mariyama, Phys. Rev. Lett. 75, 3222 (1995).

- A. V. Derbin, A. I. Egorov, I. A. Mitropol'sky, V. N. Muratova, D. A. Semenov, and E. V. Unzhakov, Eur. Phys. J. C 62, 755 (2009).
- A.V. Derbin, V.N. Muratova, D.A. Semenov, and E.V. Unzhakov, Phys. At. Nucl. 74, 596 (2011).
- M. Krčmar, Z. Krečak, A. Ljubičić, M. Stipčević, and D. A. Bradley, Phys. Rev. D 64, 115016 (2001).
- A.V. Derbin, A.I. Egorov, I.A. Mitropol'skii, and V.N. Muratova, JETP Lett. 81, 365 (2005).
- P. Belli, R. Bernabei, R. Cerulli et al. (Collaboration), Nucl. Phys. A 806, 388 (2008).
- Yu. M. Gavrilyuk, A. N. Gangapshev, A. V. Derbin, I.S. Drachnev, V. V. Kazalov, V. V. Kobychev, V. V. Kuz'minov, V. N. Muratova, S. I. Panasenkod, S. S. Ratkevicha, D. A. Semenov, D. A. Tekueva, E. V. Unzhakov, and S. P. Yakimenko, JETP Lett. 101, 664 (2015).
- A.V. Derbin, I.S. Drachnev, A.M. Gangapshev, Yu.M. Gavrilyuk, V.V. Kazalov, V.V. Kobychev, V.V. Kuzminov, V.N. Muratova, S.I. Panashenko, S.S. Ratkevich, D.A. Tekueva, E.V. Unzhakov, and S.P. Yakimenko, J. Phys.: Conf. Ser. **934**, 012018 (2017).
- Yu. M. Gavrilyuk, A. N. Gangapshev, A. V. Derbin, I. S. Drachnev, V. V. Kazalov, V. V. Kuzminov, M. S. Mikulich, V. N. Muratova, D. A. Tekueva, E. V. Unzhakov, and S. P. Yakimenko, JETP Lett. 116, 13 (2022).
- 13. J. E. Kim, Phys. Rev. Lett. 43, 103 (1979).
- M. Shifman, A. Vainshtein, and V. Zakharov, Nucl. Phys. B 166, 493 (1980).
- M. Dine, W. Fischler, M. Srednicki, Phys. Lett. B 104, 199 (1981).
- 16. A. Zhitnitskii, Sov. J. Nucl. Phys. **31**, 2 (1980).
- 17. M. Gorghetto and G. Villadoro, JHEP 03, 033 (2019).
- R. L. Workman, V. D. Burkert, V. Crede et al. (Particle Data Group), Prog. Theor. Exp. Phys. 083C01 (2022) and 2023 update.
- A. V. Derbin, S. V. Bakhlanov, A. I. Egorov, I. A. Mitropol'sky, V. N. Muratova, D. A. Semenov, and E. V. Unzhakov, Phys. Lett. B 678, 181 (2009).

- A. V. Derbin, A. S. Kayunov, V. N. Muratova, D. A. Semenov, and E. V. Unzhakov, Phys. Rev. D 83, 023505 (2011).
- 21. P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983).
- V. Anastassopoulos, S. Aune, K. Barth et al. (CAST collaboration), Nature Phys. 13, 584 (2017).
- F.T. Avignone, D. Abriola, R.L. Brodzinski et al. (Collaboration), The SOLAX Collaboration, Nucl. Phys. Proc. Supll. 72, 176 (1999).
- E. Armengaud, Q. Arnaud, C. Augier et al. (EDELWEISS Collaboration), JCAP 1311, 067 (2013).
- 25. C. M. Baglin, Nuclear Data Sheets 109, 2033 (2008).
- W. C. Haxton and K. Y. Lee, Phys. Rev. Lett. 66, 2557 (1991).
- J. N. Bahcall, A. M. Serenelli, and S. Basu, Astrophys. J. 621, L85 (2005).
- N. Grevesse and A.J. Sauval, Space Sci. Rev. 85, 161 (1998).
- T. W. Donnelly, S. J. Freedman, R. S. Lytel, R. D. Peccei, and M. Schwartz, Phys. Rev. D 18, 1607 (1978).
- 30. F. T. Avignone, C. Baktash, W. C. Barker, F. P. Calaprice, R. W. Dunford, W. C. Haxton, D. Kahana, R. T. Kouzes, H. S. Miley, and D. M. Moltz, Phys. Rev. D 37, 618 (1988).
- G. G. di Cortona, E. Hardy, J. P. Vega, and G. Villadoro, JHEP 01, 034 (2016).
- F. T. Avignone III, R. J. Creswick, J. D. Vergados, P. Pirinen, P. C. Srivastava, and J. Suhonen, JCAP 01, 021 (2018).
- E. Bertoldo, A.V. Derbin, I.S. Drachnev et al. (Collaboration), Nuclear Instruments and Methods A 949, 162924 (2020).
- A. H. Abdelhameed, S. V. Bakhlanov, P. Bauer et al. (Collaboration), Eur. Phys. J. C 80, 376 (2020).
- J. Keller and A. Sedrakian, Nucl. Phys. A 897, 62 (2013).
- 36. A. Sedrakian, Phys. Rev. D 93, 6, 065044 (2016).
- K. Hamaguchi, N. Nagata, K. Yanagi, and J. Zheng, Phys. Rev. D 98(10), 103015 (2018).