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Analog Sommerfeld law in quantum vacuum
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The vacuum of the de Sitter (dS) spacetime is char-

acterized by the local temperature T = H/π, where H

is the Hubble parameter, see [1] and references therein.

This temperature describes the thermal processes of de-

cay of the composite particles and the other activa-

tion processes, which are energetically forbidden in the

Minkowski spacetime, but are allowed in the dS back-

ground, see also Refs. [2–4]. In particular, this tem-

perature determines the probability of the ionization

of an atom in the dS environment, exp(−E/T ), where

E is the ionization potential. This activation temper-

ature is twice the Gibbons–Hawking [5] temperature

TGH = H/2π of the cosmological horizon, T = 2TGH.

As distinct from the TGH, the activation temperature

has no relation to the cosmological horizon. It describes

the local processes, which take place far away from the

horizon. If T = H/π is the local temperature in dS

spacetime, the natural question is: does it determine the

local thermodynamics of the dS vacuum? In this paper

we discuss this thermodynamics.

In the Painlevé–Gullstrand form the metric in the

dS expansion is

ds2 = −dt2 + (dr −Hrdt)2 + r2dΩ2 , (1)

where H is the Hubble parameter.

From Friedmann equations of general relativity it

follows that the vacuum energy density (which is the

cosmological constant Λ) expressed in terms of the ac-

tivation temperature T = H/π is:

ǫvac = Λ =
3

8πG
H2 =

3π

8G
T 2. (2)

If T = H/π is the local temperature of the dS vac-

uum, we can determine the free energy density, F =

= ǫvac − Tdǫvac/dT , and thus the entropy density svac:

svac = −∂F

∂T
=

3π

4G
T =

3

4G
H. (3)
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The quadratic dependence of vacuum energy on tem-

perature is also important for consideration of the ther-

modynamic Gibbs–Duhem relation for quantum vac-

uum. It leads to the reformulation of the vacuum pres-

sure. The conventional vacuum pressure Pvac obeys the

equation of state w = −1 and enters the energy momen-

tum tensor of the vacuum medium in the form:

T µν = Λgµν = diag(ǫvac, Pvac, Pvac, Pvac), Pvac = −ǫvac.

(4)

In dS state the vacuum pressure is negative, Pvac < 0.

This pressure Pvac does not satisfy the thermody-

namic Gibbs–Duhem relation, Tsvac = ǫvac + Pvac, be-

cause the right hand side of this equation is zero. The

reason for that is that in this equation we did not take

into account the gravitational degrees of freedom. Ear-

lier it was shown, that gravity contributes to thermo-

dynamics with the pair of the thermodynamically con-

jugate variables: the gravitational coupling K = 1
16πG

and the Riemann curvature R, see [6–8]. This is because

the Einstein–Hilbert action contains the gravitational

term KR, and its contribution to thermodynamics is

somewhat similar to the work density [9–12]. The grav-

itational thermodynamic variables allow us to write the

modified Gibbs–Duhem relation:

Tsvac = ǫvac + Pvac −KR. (5)

This equation is obeyed, since ǫvac + Pvac = 0 and

R = −12H2. Equation (5) suggests that one may intro-

duce the effective pressure, which is modified by gravi-

tational degrees of freedom:

P = Pvac −KR. (6)

Then the conventional Gibbs–Duhem relation is satis-

fied:

Tsvac = ǫvac + P. (7)

The effective dS pressure P is positive, P = ǫvac > 0,

and satisfies equation of state w = 1, which is similar
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to matter with the same equation of state. As a result,

due to the gravitational degrees of freedom, the dS state

has many common properties with the non-relativistic

Fermi liquid, where the thermal energy is proportional

to T 2, and with the relativistic matter with w = 1.

This means that in thermodynamics the dS vacuum be-

haves as the stiff matter introduced by Zel’dovich [13],

where the speed of sound is equal to the speed of light,

s2 = c2dP/dǫvac = c2.

In this vacuum thermodynamics, the total entropy in

the volume VH surrounded by the cosmological horizon

with radius R = 1/H is

svacVH =
4πR3

3
svac =

π

GH2
=

A

4G
, (8)

where A is the horizon area. This corresponds to the

Gibbons–Hawking entropy of the cosmological horizon.

However, it is the thermodynamic entropy coming from

the local entropy of the dS quantum vacuum, rather

than the entropy of the horizon degrees of freedom.

Since the thermodynamics of the dS state with the

thermal energy ǫvac ∝ T 2 is similar to the thermody-

namics of the Fermi liquid, there is the analog of the

Sommerfeld law, which states that the entropy per one

atom of Fermi liquid is S ∝ T/EF , where EF is Fermi

energy. We do not know what are the “atoms of the vac-

uum”, but from Eq. (3) it follows that the entropy den-

sity of the vacuum svac ∼ (T/EP)/l
3
P, where lP =

√
G

is Planck length and EP is Planck energy. This suggests

that nP ∼ 1/l3P is the density of “atoms of the vacuum”,

and the entropy per “atom” is:

S =
svac
nP

∼ svacl
3
P ∼ T

EP
. (9)

Eq. (9) is the full analog of the Sommerfeld law for Fermi

liquid. This analogy also suggests that the correspond-

ing density of states in the quantum vacuum (the ana-

log of density of states at the Fermi level NF ∼ mpF in

Fermi liquids) is NP ∼ E2
P. This huge density of states

leads to a very large entropy of the dS vacuum even for

very small temperature of the vacuum.

In conclusion, the quantum vacuum of de Sitter

spacetime looks as specific form of the relativistic Fermi

liquid with local temperature, local entropy and local

Gibbs–Duhem relation. The entropy density in Eq. (3)

is linear in the local temperature T . The local de Sitter

temperature is determined by the action of the expand-

ing Universe on the matter degrees of freedom: it de-

scribes the processes of activation, such as the thermal

process of the ionization of atoms in the de Sitter en-

vironment. This activation temperature has no relation

to the cosmological horizon, and is twice larger than the

Hawking temperature related to the horizon. Neverthe-

less, the total entropy in the region inside the cosmolog-

ical horizon is exactly the horizon entropy A/4G. This

is a kind of the bulk-boundary correspondence.

In the quasi-equilibrium states with matter the sys-

tem can be characterized by two temperatures: the tem-

perature of the vacuum component and the temperature

of matter degrees of freedom [14]. The present tempera-

ture of the vacuum component is much smaller than the

temperature of matter degrees of freedom. For example,

compared with the temperature of Cosmic Microwave

Background (CMB) radiation it is Tvac ∼ 10−30TCMB.

But the entropy of the vacuum highly exceeds the en-

tropy of matter due to large density of states in the

quantum vacuum, svac ∼ 1030sCMB.
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