## Новый солитоноподобный режим генерации широкополосного терагерцового излучения лазерными импульсами с наклонными волновыми фронтами

*С. В. Сазонов*<sup>+\*1)</sup>, *Н. В. Устинов*<sup>×</sup>

+ Национальный исследовательский центр "Курчатовский институт", 123182 Москва, Россия

\*Московский авиационный институт (Национальный исследовательский университет), 125993 Москва, Россия

<sup>×</sup> Объединенный институт ядерных исследований, 141980 Дубна, Россия

Поступила в редакцию 8 августа 2023 г. После переработки 16 августа 2023 г. Принята к публикации 16 августа 2023 г.

Проанализирован новый солитоноподобный режим генерации терагерцового излучения оптическим импульсом с наклонными волновыми фронтами. Показано, что принципиальное значение для формирования оптико-терагерцового солитона имеет дифракция оптического импульса. Наряду с солитонной частью излучения в синхронном режиме генерируется несолитонная широкополосная компонента терагерцового диапазона. Выявлены два условия синхронизма, названные нами "суперчеренковским" и "античеренковским", при которых генерация наиболее эффективна. В первом случае оптико-терагерцовый солитон распространяется быстрее несолитонной терагерцовой компоненты. Во втором случае, напротив, несолитонная компонента является предвестником оптико-терагерцового солитона.

DOI: 10.31857/S1234567823180052, EDN: wpqbcf

1. Введение. На протяжении последних десятилетий все большую популярность приобретают вопросы, связанные с эффективной генерацией терагерцового излучения. Данное излучение находит нетривиальные приложения, связанные с безопасностью, восстановлением изображений, медициной, спектроскопией различных сред и т.д. [1–3].

Исследования взаимодействия терагерцового излучения с веществом представляют интерес также с точки зрения фундаментальной физической науки [4–7]. К настоящему времени интенсивности генерируемых в лабораторных условиях терагерцовых сигналов достигли настолько высоких значений [8, 9], что возникла настоятельная необходимость в развитии "нелинейной терагерцовой оптики" [4–7].

Один из наиболее эффективных способов генерации терагерцового излучения основан на эффекте оптического выпрямления субпикосекундных и фемтосекундных лазерных импульсов в квадратичнонелинейных средах [10–12]. Генерируемые этим способом терагерцовые импульсы обладают длительностью порядка одного периода электромагнитных колебаний. Таким образом, они относятся к разряду предельно коротких импульсов (ПКИ), являясь широкополосными в спектральном смысле. По этой причине при теоретическом описании динамики данных импульсов нельзя использовать приближение медленно меняющейся огибающей (MMO) [13]. В свою очередь, входные оптические импульсы длительностью в десятки и сотни фемтосекунд можно с хорошим приближением считать квазимонохроматическими, обладающими определенной несущей частотой  $\omega$ . Поэтому к ним вполне применимо приближение MMO.

Для эффективной генерации описанных выше терагерцовых сигналов важным является выполнение условия синхронизма черенковского типа  $v_g \cos \theta = c/n_T$  [10–12]. Здесь c – скорость света в вакууме,  $v_g$  – групповая скорость света оптического импульса в рассматриваемой среде,  $n_T$  – показатель преломления данной среды в терагерцовом диапазоне,  $\theta$  – угол между направлениями распространения задаваемого оптического импульса и генерируемого терагерцового сигнала.

Если угол  $\theta$  отличен от нуля, имеем взаимно неколлинеарное распространение оптического и терагерцового сигналов. В этом случае генерируемый терагерцовый сигнал не испытывает постоянной подпитки энергией, так как отрывается от оптического импульса. Из-за этого обстоятельства эффективность генерации по энергии является невысокой, едва достигая значений порядка  $10^{-6}$  [11,12]. Увели-

<sup>&</sup>lt;sup>1)</sup>e-mail: sazonov.sergey@gmail.com

чить эффективность генерации можно, обеспечив коллинеарное распространение задаваемого и генерируемого сигналов, т.е. положив в черенковском условии  $\theta = 0$ . Тогда условие синхронизма приобретает вид  $v_g = c/n_T$  и называется в теории нелинейных волн условием Захарова–Бенни (ЗБ) [14]. При выполнении условия ЗБ возможна нелинейная генерация длинноволновых импульсов коротковолновыми сигналами. Такая генерация проявляет себя в физике плазмы [15], гидродинамике [16], а также в физике магнитных сред [17] и длинных молекул [18].

Удовлетворить условию ЗБ при оптическом методе генерации терагерцового излучения можно в полупроводниковых кристаллах [19]. Однако в таких кристаллах весьма велико затухание электромагнитных волн терагерцового диапазона. Поэтому здесь не приходится говорить о высокой эффективности генерации. В диэлектрических кристаллах, обладающих высокой квадратичной нелинейностью, оптическая групповая скорость  $v_g$ , как правило, значительно превышает фазовую скорость  $c/n_T$  в терагерцовом диапазоне [11, 12]. Поэтому здесь удовлетворить условию ЗБ не представляется возможным.

Значительно повысить эффективность генерации в экспериментальных условиях удалось с помощью техники наклонных волновых фронтов оптического импульса [20–24]. В этом случае роль угла  $\theta$  в черенковском условии играет угол между фазовыми и групповыми фронтами импульса (или, что то же самое, угол между фазовой и групповой скоростями данного оптического сигнала). В этом случае энергии оптического и генерируемого им широкополосного терагерцового сигнала переносятся в коллинеарном режиме. Как результат, эффективность генерации по энергии возрастает на несколько порядков [25].

В [26] было показано, что процесс генерации описывается нелинейной интегрируемой системой уравнений Ядзимы–Ойкавы (ЯО), которая обладает солитонными решениями [27]. В приложении к случаю оптической генерации терагерцового излучения это означает формирование оптико-терагерцового солитона. В работе [28] аналогичное исследование проведено на основе обобщенной системы ЯО, учитывающей дисперсию терагерцовой компоненты. При этом, правда, в [28] предполагалось выполнение условия ЗБ, удовлетворить которому в реальных условиях, как отмечалось выше, представляется весьма проблематичным.

В работе [29] рассмотрен солитонный режим генерации при учете наклона волновых фронтов оптического импульса. Показано, что процесс генерации в этом случае описывается системой типа Ядзимы-

Письма в ЖЭТФ том 118 вып. 5-6 2023

Ойкавы–Кадомцева–Петвиашвили (ЯОКП). Так как при выводе волнового уравнения для терагерцового сигнала использовалось приближение однонаправленного распространения (OP) [30-32], то угол наклона  $\theta$  волновых фронтов предполагался малым. В то же время в экспериментальных условиях данное условие выполняется далеко не всегда. Например, для того, чтобы удовлетворить черенковскому условию в кристалле ниобата лития, необходимо использовать углы наклона  $\theta \approx 67^{\circ}$  [11, 12]. Поэтому возникла необходимость исследования солитонного режима генерации широкополосного терагерцового сигнала с помощью квазимонохроматического оптического импульса, угол между фазовой и групповой скоростями которого является произвольным (не обязательно малым). Соответствующая система уравнений без использования приближения ОР к терагерцовой компоненте была выведена в работе [33] и названа системой Захарова-Буссинеска. Там же на основе одного из солитоноподобных решений исследован процесс генерации.

Настоящая работа посвящена физическому анализу нового солитоноподобного решения данной системы, описывающего генерацию терагерцового излучения.

Ниже, в настоящей работе, по отношению к одним и тем же объектам будут употребляться термины "солитон" и "солитоноподобное решение" без подчеркивания различий, связанных с математическим вопросом интегрируемости. Такая тенденция устойчиво просматривается в последние десятилетия в физической литературе.

2. Оптико-терагерцовые солитоны системы Захарова–Буссинеска. Пусть фазовая скорость оптического импульса с наклонными волновыми фронтами направлена вдоль оси z, которая перпендикулярна оптической оси x одноосного кристалла. Тогда система уравнений типа Захарова– Буссинеска для комплексной огибающей  $\psi$  электрического поля оптического импульса и поля E генерируемой терагерцовой компоненты имеет вид [33]

$$i\left(\frac{\partial\psi}{\partial z} + \frac{1}{v_g}\frac{\partial\psi}{\partial t}\right) = -\frac{\beta}{2}\frac{\partial^2\psi}{\partial t^2} + \alpha E\psi + \frac{c}{2n_\omega\omega}\frac{\partial^2\psi}{\partial x^2}, \quad (1)$$

$$\frac{\partial^2 E}{\partial z^2} - \frac{n_T^2}{c^2} \frac{\partial^2 E}{\partial t^2} = \frac{\partial^2}{\partial t^2} (\mu E^2 + \sigma |\psi|^2) - \gamma \frac{\partial^4 E}{\partial t^4} - \frac{\partial^2 E}{\partial x^2}.$$
 (2)

Здесь  $n_{\omega}$  – оптический показатель преломления,  $n_T = \sqrt{1 + 4\pi\chi_T}$  – терагерцовый показатель преломления,  $\chi_T$  – терагерцовая линейная восприимчивость среды,  $\beta = \partial v_q^{-1}/\partial \omega$  – параметр дисперсии групповой скорости (ДГС) оптической компоненты,  $\gamma = 2\pi (\partial^2 \chi_T / \partial \omega^2)_{\omega=0} / c^2 > 0$ – параметр дисперсии терагерцовой компоненты,  $\alpha = 4\pi\omega\chi^{(2)}(\omega;0)v_g/c^2$ ,  $\mu = 4\pi\chi^{(2)}(0;0)/c^2$ ,  $\sigma = 8\pi\chi^{(2)}(\omega;-\omega)/c^2$ ,  $\chi^{(2)}(\omega_1;\omega_2)$ – нелинейная оптическая восприимчивость второго порядка, зависящая от частот  $\omega_1$  и  $\omega_2$ .

Здесь мы предполагаем, что как подаваемый на среду оптический импульс, так и генерируемый терагерцовый сигнал являются щелевыми. Поэтому в системе (1), (2) отсутствуют вторые производные по поперечной координате y.

Если в случае  $\mu = \gamma = 0$  не учитывать дифракцию обоих компонент, то система (1), (2) переходит в одномерную систему уравнений Захарова [15, 17]. При  $\psi = 0$  уравнение (1) обращается в тождество 0 = 0, а уравнение (2) переходит в двумерное уравнение Буссинеска [34]. По этой причине в работе [33] система (1), (2) была названа системой Захарова– Буссинеска. Везде ниже по отношению к системе (1), (2) мы будем пользоваться данной терминологией.

В работе [33] было получено и детально проанализировано решение системы (1), (2) в виде оптикотерагерцового солитона с наклонными волновыми фронтами у оптической компоненты.

Здесь мы получили другое солитоноподобное решение данной системы, имеющее вид

$$\psi = \psi_m e^{iqz} \operatorname{sech}\left(\frac{t - z'/v}{\tau}\right),$$

$$E = -E_m \operatorname{sech}^2\left(\frac{t - z'/v}{\tau}\right),$$
(3)

где ось z', вдоль которой происходит перенос энергии обеих компонент, образует с осью z угол  $\theta$  и связана с ней и оптической осью x преобразованием поворота

$$z' = z\cos\theta + x\sin\theta. \tag{4}$$

При этом для угла  $\theta$ и амплитуд солитонных компонент имеем соответственно

$$\cos\theta = \frac{1}{\sqrt{1+\eta}},\tag{5}$$

$$\eta = \frac{n_{\omega}\omega v_g^2}{c}(\beta - \beta_c), \quad \beta_c = \frac{6\alpha\gamma}{\mu}, \tag{6}$$

$$\psi_m = \frac{1}{\tau} \sqrt{\frac{6\gamma}{\sigma\mu} \left(\frac{1}{v_B^2} - \frac{1}{v^2}\right)}, \quad E_m = \frac{6\gamma}{\mu\tau^2}.$$
 (7)

Скорость v рассматриваемого солитона и скорость  $v_B$  солитона уравнения Буссинеска определяются соответственно выражениями

$$v = v_g \cos \theta, \quad \frac{1}{v_B} = \sqrt{\frac{n_T^2}{c^2} - \frac{4\gamma}{\tau^2}},\tag{8}$$

а для нелинейной добавки qк волновому числу оптического импульса имеем

$$q = \frac{3\alpha\gamma}{\mu\tau^2}.$$
 (9)

В качестве свободного параметра в решении (3)– (9) выступает длительность  $\tau$  оптической компоненты. При этом длительность терагерцовой составляющей, как видно из (3),  $\sim \tau/2$ .

Важно заметить, что принципиальную роль в формировании оптикотерагерцового солитона (3)– (9) играет дифракция оптического импульса, описываемая последним слагаемым в правой части (1). Действительно, пренебрежение данной дифракцией равносильно формальному условию  $n_{\omega} \to \infty$ . В этом случае, как видно из (5) и (6),  $\eta \to \infty$  и соз  $\theta = 0$ . Тогда из первого выражения (8) имеем v = 0, что, согласно (3) и (7), приводит к исчезновению солитона.

Из (7) видно, что выражение для амплитуды терагерцовой компоненты рассматриваемого солитоноподобного решения совпадает с выражением для амплитуды солитона уравнения Буссинеска. В то же время скорость обеих компонент, распространяющихся в связанном режиме, фиксирована, не зависит от свободного параметра  $\tau$  (см. (5), (6) и первое выражение (8)). Аналогичная ситуация имеет место для солитонов с наклонными волновыми фронтами, описываемых модифицированным нелинейным уравнением Шредингера [35].

Важно заметить, что в рассматриваемом решении фиксированным является также значение угла  $\theta$ наклона волновых фронтов оптической компоненты (см. (5), (6)).

Терагерцовая компонента (3) солитона представляет собой униполярный (полуволновый) электромагнитный импульс. В настоящее время нелинейная оптика униполярных импульсов испытывает достаточно бурное развитие (см., например, обзор [36]).

В выражении (8) для скорости  $v_B$  второе (дисперсионное) слагаемое под знаком корня следует рассматривать как малую поправку к первому слагаемому. Поэтому здесь подкоренное выражение всегда положительно. Данное утверждение становится особенно очевидным, если принять, что зависимость восприимчивости от частоты в терагерцовом диапазоне имеет лоренцовский вид  $\chi_T(\omega) = \frac{\omega_T^2 \chi_T}{\omega_T^2 - \omega^2}$ , где  $\omega_T$  – характерная резонансная частота терагерцового поглощения. Тогда  $(\partial^2 \chi_T(\omega)/\partial \omega^2)_{\omega=0} = 2\chi_T/\omega_T^2$ . Следовательно,

$$\gamma = \frac{n_T^2 - 1}{c^2 \omega_T^2}.$$
(10)

Письма в ЖЭТФ том 118 вып. 5-6 2023

Подставляя (10) во второе выражение (8), получим

$$\frac{1}{v_B} = \frac{n_T}{c} \sqrt{1 - 4\frac{n_T^2 - 1}{(n_T \omega_T \tau)^2}}.$$
 (11)

Метод учета дисперсии в виде разложения по временным производным от электрического поля справедлив при условии ( $\omega_T \tau$ )<sup>2</sup>  $\gg 1$  [31, 32, 37]. Отсюда видно, что подкоренное выражение в (11) положительно.

После подстановки (10) во второе выражение (6) будем иметь

$$\beta_c = 6(n_T^2 - 1)\frac{\omega v_g}{c^2 \omega_T^2} \frac{\chi^2(\omega; 0)}{\chi^{(2)}(0; 0)}.$$
 (12)

Из (5) и (6) следует обязательное условие

$$\beta - \beta_c > 0. \tag{13}$$

Аналогично условие положительности подкоренного выражения в первом выражении (7) с учетом (8) и (10) и (11) запишем в виде

$$\frac{\chi^{(2)}(\omega;-\omega)}{\chi^{(2)}(0;0)} \left[ 1 - \left(\frac{c}{n_T v_g \cos\theta}\right)^2 - \frac{n_T^2 - 1}{(n_T \omega_T \tau)^2} \right] > 0.$$
(14)

В рассматриваемом нами процессе генерации должно выполняться установленное в [38] и продемонстрированное на примерах в [39] общее правило сохранения электрической площади импульса при его одномерном распространении. Так как оптическая компонента является квазимонохроматическим солитоном огибающей, то ее электрическая площадь всегда равна нулю. На входе в кристалл терагерцовая компонента отсутствует. Поэтому ее электрическая площадь также равна нулю. В силу правила сохранения электрической площади приходим к выводу, что данная величина и внутри кристалла должна быть равна нулю. Таким образом,

$$S_E \equiv \int_{-\infty}^{+\infty} E dt = 0.$$
 (15)

Площадь терагерцовой компоненты солитона (3) равна  $S_E^{(s)} = -12\gamma/\mu\tau$  и не удовлетворяет условию (15). Следовательно, в процессе генерации должна порождаться терагерцовая компонента несолитонного типа. В силу условия (15) площадь данной несолитонной компоненты должна быть равна  $-S_E^{(s)} = +12\gamma/\mu\tau$ . Вид этой сугубо терагерцовой компоненты можно установить, полагая в (2)  $\psi = 0$ . Учитывая, что  $\partial^2/\partial z^2 + \partial^2/\partial x^2 = \partial^2/\partial z'^2 + \partial^2/\partial x'^2$  и

рассматривая распространение только вдоль ос<br/>и $z^\prime,$ запишем

$$\frac{\partial^2 E}{\partial z'^2} - \frac{n_T^2}{c^2} \frac{\partial^2 E}{\partial t^2} = \mu \frac{\partial^2}{\partial t^2} (E^2) - \gamma \frac{\partial^4 E}{\partial t^4}.$$

Используя теперь вполне уместное здесь приближение OP [32, 37], придем к уравнению Кортевега-де Вриза (КдВ)

$$\frac{\partial E}{\partial z'} + \frac{n_T}{c} \frac{\partial E}{\partial t} + \frac{c}{n_T} \mu E \frac{\partial E}{\partial t} - \frac{c}{2n_T} \gamma \frac{\partial^3 E}{\partial t^3} = 0.$$
(16)

Хорошо известно автомодельное (несолитонное) знакопеременное решение уравнения КдВ в виде промодулированного по частоте импульса [40, 41]. Это решение можно записать в виде [41]  $E = z'^{2/3} f(\xi/z'^{1/3})$ , где  $\xi = t - n_T z'/c$ , а f – функция, подчиняющаяся обыкновенному дифференциальному уравнению

$$\frac{c}{2n_T}\gamma\ddot{f} + \frac{\varphi}{3}\dot{f} - \frac{c}{n_T}f\dot{f} - \frac{2}{3}f = 0$$

где точка над f обозначает производную по автомодельной переменной  $\varphi = \xi/{z'}^{1/3}$ .

Автомодельное решение обладает весьма широким частотным спектром, обладающим свойствами суперконтинуума [28, 29].

Электрическая площадь данного автомодельного решения отлична от нуля. В нашем случае она равна площади солитона (3), взятой с противоположным знаком.

Важно заметить, что скорость данной несолитонной части терагерцового излучения равна линейной скорости  $c/n_T$ .

Рассмотрим конкретные примеры.

В кристалле типа КDP все три нелинейные восприимчивости второго порядка  $\chi^{(2)}(0;0), \chi^{(2)}(\omega;0)$  и  $\chi^{(2)}(\omega;-\omega)$  положительны [42]. Поэтому неравенство (14) для этого случая можно переписать в виде условия "суперчеренковского" вида

$$v_g \cos \theta > v_B \approx c/n_T.$$
 (17)

Так как здесь скорость  $v = v_g \cos \theta$  оптикотерагерцового солитона больше, чем линейная скорость  $c/n_T$ , то упомянутая выше несолитонная часть генерируемого терагерцового излучения отстает от солитонной части, распространяющейся в связанном состоянии с оптическим импульсом.

Из (12) в этом случае видно, что  $\beta_c > 0$ . Тогда, согласно неравенству (13), ДГС оптического импульса обязательно должна быть положительной. Более того, положительное значение параметра  $\beta$  должно удовлетворять условию  $\beta > \beta_c$ . Взяв  $\chi^{(2)}(\omega; 0)/\chi^{(2)}(0; 0) \sim 0.1$  [42],  $n_T \approx 2, \omega \sim 10^{15} \,\mathrm{c}^{-1}, \omega_T \sim 10^{14} \,\mathrm{c}^{-1}, v_g \sim c$ , будем иметь  $\beta_c \sim 10^{-24} \,\mathrm{c}^2/\mathrm{cM}$ . Полагая также  $n_\omega \sim 1, \beta - \beta_c \sim 0.1$ , найдем из (6) и (12)  $\eta \sim 1$ , что после подстановки в (5) может дать вполне разумные значения для угла наклона  $\theta$ , удовлетворяющие "суперчеренковскому" условию (17). Для более четких выводов здесь необходимо использовать не оценочные, а точные значения приведенных выше параметров.

В качестве другого примера рассмотрим одноосный кристалл ниобата лития. Здесь  $\chi^{(2)}(0;0) > 0$ ,  $\chi^{(2)}(\omega;0) < 0$  и  $\chi^{(2)}(\omega;-\omega) < 0$  [42]. При этом  $\chi^{(2)}(0;0) \sim 10^{-6}$  CGSE,  $|\chi^{(2)}(\omega;0)| \sim |\chi^{(2)}(\omega;-\omega)| \sim \sim 10^{-7}$  SGSE. Тогда из (8), (11) и (14) будем иметь "античеренковское" условие

$$v_g \cos \theta < v_B \approx c/n_T.$$
 (18)

Здесь, как легко видеть, несолитонная часть терагерцового излучения распространяется быстрее оптико-терагерцового солитона, являясь его предвестником.

Как видно из (12), в этом случае  $\beta_c < 0$ . Тогда условие (13) выполняется при любых положительных значениях параметра ДГС  $\beta$ . При отрицательной ДГС абсолютное значение параметра  $\beta$  должно удовлетворять условию  $|\beta| < |\beta_c|$ . В частности, данное неравенство удовлетворяется при  $\beta = 0$ . Тогда приходим к "бездисперсионным" солитонам, которые имеют место также в решении системы (1), (2) другого типа, найденного в [33]. Из (5) следует, что  $\eta = \tan^2 \theta$ . Используя также первое выражение (6), будем иметь

$$\beta_c = \beta - \frac{c}{n\omega v_q^2} \tan^2 \theta.$$
<sup>(19)</sup>

Таким образом, величина  $\beta_c$  выполняет роль эффективного параметра ДГС оптического импульса. Второе слагаемое в правой части (19) появляется благодаря дифракции оптической компоненты (см. последнее слагаемое в правой части (1)). Следовательно, дифракция вносит вклад в эффективную ДГС благодаря наклону волновых фронтов оптического импульса. Дифракционное искривление фазовых волновых фронтов, распространяющихся вдоль оси z, приводит к уширению оптического волнового пакета в проекции на ось z', что равносильно наличию эффективной дисперсии [35]. Это подтверждается выражением (19).

Численные оценки параметров  $|\beta_c|$  и  $\eta$  для кристалла ниобата лития по порядку величины совпадают с соответствующими значениями, полученными выше для кристалла типа KDP.

Очевидно, что оптико-терагерцовый солитон формируется на дистанциях порядка дисперсионной длины  $l_d \sim \tau^2/2|\beta_c|$  оптического импульса. Подставив сюда приведенные выше оценочные значения, найдем  $l_d \sim 10^{-2}$  см. Следовательно, описанные выше сценарии генерации солитонной и несолитонной частей терагерцового излучения вполне можно наблюдать в кристаллах с характерным размером в несколько миллиметров.

Примем, что поперечные размеры оптического и терагерцового импульсов  $D \sim 1$  мм. Тогда дифракционная длина терагерцового сигнала  $l_D \sim D^2/c\tau \sim 10$  см. Это значительно превосходит предполагаемые размеры кристаллического образца. Поэтому формирование оптико-терагерцового солитона представляется здесь вполне возможным в реальных условиях.

Характерную длину волны  $\lambda_T$  генерируемого пирокополосного терагерцового сигнала можно оценить как  $\lambda_T \sim c\tau$ . Подставив сюда  $\tau \sim 10^{-13}$  см, будем иметь  $\lambda_T \sim 10^{-2} - 10^{-3}$  см. Таким образом,  $\lambda_T \ll D$ . Данное условие является важным аргументом в пользу принятого при записи исходной системы (1), (2) параксиального приближения.

Легко видеть, что значения интенсивностей оптической  $I_{\omega}$  и терагерцовой  $I_T$  компонент рассмотренного здесь солитона можно оценить с помощью выражений вида

$$I_{\omega} \sim \frac{c}{4\pi(\omega_T \tau)^2 |\chi^{(2)}(0;0)\chi^{(2)}(\omega;-\omega)|},$$
$$I_T \sim \frac{c}{4\pi(\omega_T \tau)^4 |\chi^{(2)}(0;0)|^2}.$$

Отсюда для эффективности генерации имеем

$$\frac{I_T}{I_\omega} \sim \frac{1}{(\omega_T \tau)^2} \left| \frac{\chi^{(2)}(0;0)}{\chi^{(2)}(\omega;-\omega)} \right|$$

Подставив сюда приведенные выше значения присутствующих параметров и полагая  $\tau \sim 10^{-13} \, {\rm c}$ , получим  $I_\omega \sim 10^{12} \, {\rm Bt/cm^2}, \, I_T \sim 10^{11} \, {\rm Bt/cm^2}$  и  $I_T/I_\omega \sim \sim 10^{-1}.$ 

Таким образом, эффективность генерации в проанализированном здесь солитоноподобном режиме может достигать порядка десяти процентов. Это значительно выше, чем эффективность, достигаемая на основе солитонного режима, проанализированного в [33]. Аналогичное замечание касается также интенсивностей оптической и терагерцовой компонент.

Важным отличием проанализированного здесь решения от солитоноподобного решения, полученного в [33], является то, что здесь длительность генерируемого терагерцового сигнала оказывается в два раза меньшим длительности оптического импульса (см. (3)). Таким обрзаом, терагерцовый сигнал полностью захватывается оптическим импульсом в синхронном режиме распространения. Это обеспечивает хорошую подпитку генерируемого сигнала за счет энергии оптического импульса. В солитоноподобном решении, найденном в работе [33], длительности обоих компонент являются одинаковыми. Таким образром захват терагерцового сигнала оптическим импульсом не является столь эффективным, как в рассмотренном здесь случае. Поэтому эффективность генерации является не такой высокой.

3. Заключительные замечания. Таким образом, в настоящей работе получено новое солитоноподобное решение системы (1), (2) типа Захарова-Буссинеска. Важно заметить, что принципиальная роль в формировании данного солитона принадлежит дифракции. На основе солитоноподобного решения проанализирован процесс генерации терагерцового излучения оптическим импульсом с наклонными волновыми фронтами в кристалле, обладающем квадратичной оптической нелинейностью. С помощью правила сохранения электрической площади показано, что помимо солитонной части терагерцового излучения порождается также несолитонная (автомодельная) часть. Угол наклона волновых фронтов оптической компоненты солитона однозначно определяется параметрами кристалла и не может иметь произвольное значение.

В зависимости от знаков различных нелинейных восприимчивостей втрого порядка, зависящих от несущей частоты оптического импульса, могут быть реализованы режимы при "суперчеренковском" (17) и "античеренковском" (18) условиях синхронизма. В первом случае скорость оптико-терагерцового солитона больше скорости несолитонной части генерируемого терагерцового излучения. Во втором случае, напротив, несолитонная часть является, своего рода, предвестником оптико-терагерцового солитона.

Заметим, что проанализированный в работе [33] солитоноподобный режим генерации наиболее эффективно реализуется при строгом выполнении черенковского условия.

Открытым пока остается вопрос устойчивости найденного здесь солитоноподобного решения. Кроме того, требует исследования вопрос о том, при каких входных условиях могут реализовываться солитоноподобные решения, найденные здесь и в работе [33]. Возможно, одной из подсказок здесь может служить то, что интенсивности оптической и терагерцовой компонент найденного здесь солитона на два-три порядка больше соответствующих интенсивностей солитона, проанализированного в работе [33]. Более строгого и внятного ответа следует ожидать от численных экспериментов с системой (1), (2), которые мы планируем провести отдельно.

- 1. B. Fergusson and X.-C. Zhang, Nat. Mater. 1, 26 (2002).
- О.П. Черкасова, Д.С. Сердюков, А.С. Ратушняк, Е.Ф. Немова, Е.Н. Козлов, Ю.В. Шидловский, К.И. Зайцев, В.В. Тучин, Оптика и спектроскопия **128**, 852 (2020) [О.Р. Cherkasova, D.S. Serdyukov, A.S. Ratushnyak, E.F. Nemova, E.N. Kozlov, Yu.V. Shidlovskii, K.I. Zaytsev, and V.V. Tuchin, Opt. Spectrosc. **128**, 855 (2020)].
- A. Irizawa, S. Lupi, and A. Marcelli, Condens. Matter.
   6, 23 (2021).
- С. В. Сазонов, ЖЭТФ 146, 483 (2014) [S. V. Sazonov, JETP 119, 423 (2014)].
- K. Dolgaleva, D.V. Materikina, R.W. Boyd, and S.A. Kozlov, Phys. Rev. A 92, 023809 (2015).
- S.V. Sazonov and N.V. Ustinov, Phys. Rev. A 98, 063803 (2018).
- M. Zhukova, M. Melnik, I. Vorontsova, A. Tcypkin, and S. Kozlov, Photonics 98, 7 (2020).
- M. Shalaby and C. P. Hauri Nature Commun. 6, 5976 (2015).
- X.-C. Zhang, A. Shkurinov, and Y. Zhang, Nature Photon. 11,16 (2017).
- У.А. Абдуллин, Г.А. Ляхов, О.В. Руденко, A.C. Чиркин, ЖЭТФ 66, 1295 (1974) [U.A. Abdullin, G.A. Lyakhov, O.V. Rudenko, and A.S. Chirkin, Sov. Phys. JETP 39, 633 (1974)].
- Д. А. Багдасарян, А. О. Макарян, П. С. Погосян, Письма в ЖЭТФ **37**, 498 (1983) [D. A. Bagdasaryan, A. O. Makaryan, and P. S. Pogosyan, JETP Lett. **37**, 594 (1983)].
- D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984).
- С. А. Ахманов, В. А. Выслоух, А. С. Чиркин, Оптика фемтосекундных лазерных импульсов, Наука, М. (1988).
- Р. Додд, Дж. Эйлбек, Дж. Гиббон, Х. Моррис, Солитоны и нелинейные волновые уравнения, Мир, М. (1988) [R.K. Dodd, J.C. Eilbeck, J. Gibbon, and H.C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, N.Y. (1982)].
- B. E. Захаров, ЖЭТФ 62, 1745 (1972) [V. E. Zakharov, Sov. Phys. JETP 35, 908 (1972)].
- 16. D. J. Benney, Stud. Appl. Math. 56, 81 (1977).
- В. С. Львов, Нелинейные спиновые волны, Наука, М. (1987).
- А. С. Давыдов, УФН 138, 603 (1982) [A.S. Davydov, Sov. Phys.-Uspekhi 25, 898 (1982)].

- C. P. Hauri, C. Ruchert, C. Vicario, and F. Ardana, Appl. Phys. Lett. 99, 161116 (2011).
- J. Hebling, G. Almasi, I.Z. Kozma, and J. Kuhl, Opt. Express 10, 1161 (2002).
- А. Г. Степанов, А. А. Мельников, В. О. Компанец, С. В. Чекалин, Письма в ЖЭТФ 85, 279 (2007)
   [А. G. Stepanov, А. А. Mel'nikov, V. O. Kompanets, and S. V. Chekalin, JETP Lett. 85, 227 (2007)].
- M. I. Bakunov, S. B. Bodrov, and V. V. Tsarev, J. Appl. Phys. **104**, 073105 (2008).
- J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Barta, and K. A. Nelson, JOSA B 25, 6 (2008).
- 24. G. Kh. Kitaeva, Laser Phys. Lett. 5, 559 (2008).
- S. B. Bodrov, A. N. Stepanov, M. I. Bakunov, V. Shishkin, and I. E. Ilyakov, Opt. Express. 17, 1871 (2009).
- С. В. Сазонов, А. Ф. Соболевский, Письма в ЖЭТФ
   75, 746 (2002) [S.V. Sazonov and A.F. Sobolevskii, JETP Lett. 75, 621].
- N. Yajima and M. Oikawa, Progr. Theor. Phys. 56, 1719 (1976).
- А. Н. Бугай, С. В. Сазонов, Письма в ЖЭТФ 87, 470 (2008) [А. N. Bugai and S. V. Sazonov, JETP Lett. 87, 403 (2008)].
- С. В. Сазонов, Н. В. Устинов, Письма в ЖЭТФ 114, 437 (2021) [S. V. Sazonov and N. V. Ustinov, JETP Lett. 114, 380 (2021)].
- 30. P. J. Caudrey, J. C. Eilbeck, J. D. Gibbon, and R. K. Bullough, J. Phys. A: Math., Nucl. Gen. 6, L53 (1973).
- Э.М. Беленов, А.В. Назаркин, Письма в ЖЭТФ 100, 252 (1990) [Е.М. Belenov and A.V. Nazarkin, JETP Lett. 51, 288 (1990)].
- 32. Э.М. Беленов, А.В. Назаркин, В.А. Ущаповский,

ЖЭΤΦ 100, 762 (1991) [E. M. Belenov, A. V. Nazarkin, and V. A. Ushchapovskii, JETP 73, 57 (1991)].

- S. V. Sazonov and N. V. Ustinov, Laser Phys. Lett. 19, 025401 (2022).
- Дж. Уизем, Линейные и нелинейные волны, Мир, М. (1977) [G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons, Inc., N.Y. 1999].
- С.В. Сазонов, Письма в ЖЭТФ 115, 207 (2022)
   [S.V. Sazonov, JETP Lett. 115, 181 (2022)].
- Р.М. Архипов, М.В. Архипов, А.А. Шимко, А.В. Пахомов, Н.Н. Розанов, Письма в ЖЭТФ
   110, 9 (2019) [R.M. Arkhipov, M.V. Arkhipov, A.A. Shimko, A.V. Pakhomov, and N.N. Rosanov, JETP Lett. 110, 15 (2019)].
- С. В. Сазонов, А. Ф. Соболевский, ЖЭТФ 123, 1160 (2003) [S. V. Sazonov and A. F. Sobolevskii, JETP 96, 1019 (2003)].
- Н. Н. Розанов, Оптика и спектроскопия 107, 761 (2009) [N.N. Rosanov, Optics and Spectroscopy 107, 721 (2009)].
- Н. Н. Розанов, Р. М. Архипов, М. В. Архипов, УФН
   188, 1347 (2018) [N. N. Rosanov, R. M. Arkhipov, and M. V. Arkhipov, Phys.-Uspekhi 61, 1227 (2018)].
- В.Е. Захаров, С.В. Манаков, С.П. Новиков, Л.П. Питаевский, *Теория солитонов: метод обратной задачи*, Наука, М. (1980) [V.E. Zakharov, S.V. Manakov, S.P. Novikov, and L.P. Pitaevskii, *Theory of Solitons: The Inverse Scattering Method*, Consultants Bureau, N.Y. (1984)].
- Дж. Лэм, Введение в теорию солитонов, Мир, М. (1983) [G.L. Lamb, Elements of Soliton Theory, John Wiley & Sons, N.Y. (1980)].
- 42. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, Springer, N.Y. (2005).