Возбуждение электронной оболочки атома в двойном β -распаде

М. И. Криворученко(p+1), *К. С. Тырин*(p+1), *Ф. Ф. Карпешин*(p+1)

+Национальный исследовательский центр "Курчатовский институт", 123182 Москва, Россия

*Всероссийский научно-исследовательский институт метрологии имени Д.И.Менделеева (ВНИИМ), 190005 С.-Петербург, Россия

> Поступила в редакцию 31 июля 2023 г. После переработки 29 августа 2023 г. Принята к публикации 30 августа 2023 г.

Исследуется вопрос о переходе в безнейтринном двойном β -распаде электронной оболочки атома в возбужденные состояния. Для моделирования энергетического спектра β -электронов, чувствительного к массе и майорановской природе нейтрино, вопрос имеет принципиальное значение. Зависимость полученных результатов от атомного номера указывает на определяющую роль механизма Фейнберга– Мигдала в возбуждении атомов. Нами найдены амплитуды перекрытия волновых функций электронных оболочек родительского атома и дочернего иона для одиннадцати атомов, двухнейтринный двойной β -распад которых наблюдался экспериментально. Только приблизительно в 1/4 случаев ожидается переход в основное состояние или в возбужденное состояние с наименышей энергией, структура электронной оболочки которого наследуется от родительского атома. Переход дочернего иона в основное состояние в таких случаях сопровождается излучением фотонов ультафиолетового диапазона, что может служить дополнительной сигнатурой двойного β -распада. Средняя энергия возбуждения электронной оболочки оказывается в пределах 300–800 эВ, причем дисперсия принимает еще большие значения: от 1.7 кэВ в кальции до 15 кэВ в уране.

DOI: 10.31857/S1234567823190023, EDN: xvkvud

В поисках отклонений от Стандартной модели (СМ) большой интерес представляют β -процессы, в первую очередь безнейтринный двойной *β*-распад $(0\nu 2\beta)$, который не сохраняет полное число лептонов. В кварковом секторе СМ аналогичное значение имеют процессы, не сохраняющие полное число барионов, такие как распад протона или нейтронантинейтронные осцилляции [1]. За рамками СМ любой механизм $0\nu 2\beta$ -распада ведет к существованию майорановской массы нейтрино [2, 3]. В эффективной теории майорановская масса нейтрино, m_{ν} , генерируется оператором Вайнберга размерности d = 5[4]. В отсутствие операторов размерности d > 5 и симметрии между левыми и правыми элементарными фермионами амплитуда $0\nu 2\beta$ -распада для легких нейтрино пропорциональна m_{ν} .

Экспериментальные поиски 0 $\nu 2\beta$ -распада активно ведутся на протяжении ряда десятилетий. В последнее время коллаборация GERDA, используя в качестве активного вещества изотоп ⁷⁶Ge, получила ограничение $m_{\nu} < 0.079-0.18$ эВ на доверительном уровне CL = 90 % [5]. Близкие результаты получены коллаборацией EXO [6] с использованием ксенона-136. Ограничение на майорановскую массу нейтрино $m_{\nu} < 0.3 - 0.9$ эВ также получено коллаборацией NEMO-3 с использованием молибдена-100 [7]. Эксперимент SuperNEMO находится в стадии подготовки [8]. В активной фазе находятся эксперименты CUORE с изотопом ¹³⁰Te [9, 10] и KamLAND-Zen с жидким ксеноном-136 [11].

Неопределенность верхнего предела на массу нейтрино обусловлена точностью вычислений ядерной части процесса [12–14].

Эксперименты по поиску $0\nu 2\beta$ -распада сосредоточены на исследовании энергетического спектра более вероятного двухнейтринного двойного β -распада $(2\nu 2\beta)$ на границе фазового пространства, где сосредоточен вклад безнейтринной моды. Экспериментаторы неизбежно сталкиваются с проблемой, получившей широкую известность в связи с попытками измерения массы нейтрино в β -распаде трития: дочерний атом с высокой вероятностью переходит в возбужденное состояние. Это может быть возбужденное состояние молекулы, в состав которой входят активные атомы вещества. Сами атомы испытывают возмущение за счет "встряхивания" (shake-up и shake-off) или внутреннего рассеяния β -электронов.

¹⁾e-mail: mikhail.krivoruchenko@itep.ru; Tyrin_KS@nrcki.ru; fkarpeshin@yandex.ru

Теория этих процессов развита в работах Фейберга [15] и Мигдала [16]. Спектр β -электронов особенно заметно искажается вблизи границы фазового пространства. Эффект значительно возрастает из-за того, что разброс остаточных энергий возбуждения почти на порядок превышает среднее значение [17]. Аналогичное влияние можно ожидать со стороны химического сдвига [18].

Эффекты возбуждения и ионизации атомов, первоначально изученные в контексте ядерной физики, наблюдаются в молекулярных, твердотельных системах и играют ключевую роль в экспериментах LUX [19], XENON1T [20], DarkSide-50 [21], нацеленных на регистрацию взаимодействия частиц темной материи с веществом.

В двойном β -распаде дочерний ион с высокой вероятностью оказывается в возбужденном состоянии [22–25], что уменьшает энергию, уносимую β электронами. В пренебрежении отдачей ядра энергетический спектр β -электронов в $0\nu 2\beta$ -распаде представляет собой дельта функцию, размытую атомными эффектами. Данный пик рассматривается в качестве сигнатуры $0\nu 2\beta$ -распада. В распаде реализуется сценарий, при котором в вероятности доминируют каналы с возбуждением валентных электронов дочернего иона, в то время как средняя энергия возбуждения, \mathcal{M} , и ее дисперсия, \mathcal{D} , насыщаются сравнительно редкими переходами в континуум электронов, заселяющих внутренние уровни.

В настоящей работе дана оценка вероятного отклонения энергии β -электронов от энерговыделения в $0\nu 2\beta$ -распадах 11 атомов, для которых $2\nu 2\beta$ распад наблюдался экспериментально.

В среднетяжелых и тяжелых атомах энергия связи электронов на К оболочке отличается от энергии связи валентных электронов примерно на три порядка ($\sim Z^2$), поэтому качественно оценить масштаб \mathcal{M} и *D* весьма затруднительно. В вероятности распадов доминируют состояния с возбуждением валентных электронов, имеющих малую энергию связи. Оценки, однако, приводят к неожиданно большим значениям средней энергии возбуждения и дисперсии. Учитывая также, что в многочастичных задачах точность вычислений ограничена, в работе рассмотрены альтернативные подходы, включая модель Томаса–Ферми (TF) [26], модель Томаса–Ферми– Дирака-Вайцзеккера (TFDW) [27-31], нерелятивистский формализм Рутаана-Хартри-Фока (RHF) [32] и релятивистский формализм Дирака-Хартри-Фока (DHF) [33–37]. Сравнение результатов позволяет оценить масштаб неопределенностей электронных оболочек атомов.

Каждый из перечисленных подходов имеет свои преимущества и ограничения. В отличие от модели TF, в модели TFDW плотность электронов в нуле конечна, что позволяет определить дисперсию в рамках модели. В методе RHF волновые функции электронов параметризуются аналитически, что позволяет оценить обменные вклады в дисперсию и другие наблюдаемые, однако применимость метода ограничена легкими и среднетяжелыми атомами. В рамках DHF результаты расчета основных свойств электронных оболочек атомов табулированы в работах [33–35] и реализованы в виде пакетов программ, таких как GRASP-2018 [36, 37] и RAINE [38, 39].

Далее используется система атомных единиц $\hbar = m = e = 1, c = 137$, где m – масса электрона, e – заряд протона, c – скорость света. Обозначим $\hat{H}_{Z,N}$ гамильтониан N электронов в ионе с зарядом ядра $Z, |Z, N\rangle$ – основное состояние, $E_{Z,N}$ – энергия связи электронной оболочки иона, $\hat{H}_{Z,N}|Z,N\rangle = E_{Z,N}|Z,N\rangle$.

Гамильтониан электронной оболочки дочернего иона связан с гамильтонианом электронной оболочки родительского нейтрального атома соотношением

$$\hat{H}_{Z+2,Z} = \hat{H}_{Z,Z} - 2\sum_{i} \frac{1}{r_i},\tag{1}$$

где $r_i = |\mathbf{r}_i|$, \mathbf{r}_i - координата *i*-го электрона, суммирование проводится по i = 1, ..., Z. В следующий момент после встряхивания электронная оболочка дочернего иона находится в состоянии $|Z, Z\rangle$, в то время как ядро имеет заряд Z+2. Средняя энергия возбуждения электронной оболочки дочернего иона определяется соотношением

$$\mathcal{M} = \langle Z, Z | \hat{H}_{Z+2,Z} | Z, Z \rangle$$
$$-\langle Z+2, Z | \hat{H}_{Z+2,Z} | Z+2, Z \rangle$$
(2)

или, с учетом уравнения (1),

$$\mathcal{M} = E_{Z,Z} + 2Z^{-1}E_{Z,Z}^{\rm C} - E_{Z+2,Z}, \qquad (3)$$

где $E_{Z,N}^{\mathbf{C}}$ – энергия кулоновского взаимодействия электронов с ядром.

В таблице 1 представлены результаты расчета энергии возбуждения в моделях TF, TFDW и DHF. Сначала находятся величины \mathcal{M}' , которые отличаются от \mathcal{M} заменой в уравнении (3) $E_{Z+2,Z}$ на $E_{Z+2,Z+2}$. Разность этих величин равна энергии двукратной ионизации, I_2 ; имеет место соотношение $\mathcal{M} = \mathcal{M}' - I_2$. Экспериментальные значения I_2 находятся из таблиц [40].

В модели TF вычисления проводятся по схеме [17]. Модель TFDW, являясь обобщением модели TF,

Таблица 1. Средняя энергия возбуждения электронной оболочки дочернего иона и ее дисперсия для одиннадцати атомов, $2\nu 2\beta$ распад которых наблюдался экспериментально. Во второй колонке приводятся значения разности масс, Q, нейтральных атомов, участвующих в распаде. В четвертой колонке даны интегралы перекрытия оболочек родительского атома и дочернего дважды ионизованного иона, найденные с помощью пакета программ GRASP-2018 [36, 37]. Далее показаны средняя энергия возбуждения \mathcal{M} электронной оболочки дочернего иона в моделях TF, TFDW и DHF, верхняя граница дисперсии $\overline{\mathcal{D}}$ в моделях TF, TFDW и дисперсия \mathcal{D} в методах DHF и RHF. Величины \mathcal{M}_{DHF} и $\mathcal{D}_{\text{DHF}/a}$ без учета обменных вкладов получены с использованием результатов работ [35] и [34], соответственно. $\mathcal{D}_{\text{DHF}/b}$ включает обменные вклады. Для вычисления $\mathcal{D}_{\text{RHF}/a}$ без учета и $\mathcal{D}_{\text{RHF}/b}$ с учетом обменных вкладов используются волновые функции орбиталей в методе RHF [32]. Энергия двукратной ионизации I_2 [40] округляется до трех значащих цифр. Предсказания нерелятивистских моделей ограничены значениями заряда ядра $Z \leq 54$

Прочева	Q	Ссыл-	K	$\mathcal{M}_{\mathrm{TF}}$	$\mathcal{M}_{\rm TFDW}$	$\mathcal{M}_{\rm DHF}$	I_2	$ar{\mathcal{D}}_{ ext{TF}}^{1/2}$	$\bar{\mathcal{D}}_{\mathrm{TFDW}}^{1/2}$	$\mathcal{D}_{\mathrm{DHF/a}}^{1/2}$	$\mathcal{D}_{ m DHF/b}^{1/2}$	$\mathcal{D}_{ m RHF/a}^{1/2}$	$\mathcal{D}_{ m RHF/b}^{1/2}$
процесс	(кэВ)	ка	n_Z	(эВ)	(эВ)	(эВ)	$(\mathbf{\mathfrak{s}B})$	(кэВ)	(кэВ)	(кэВ)	(кэВ)	(кэВ)	(кэВ)
$^{48}_{20}\mathrm{Ca} ightarrow ^{48}_{22}\mathrm{Ti}$	4267.98(32)	[42]	0.466	335	247	299	20.4	1.25	2.43	1.70	1.65	1.66	1.61
$^{76}_{32}\text{Ge} \rightarrow ^{76}_{34}\text{Se}$	2039.006(50)	[43]	0.575	383	246	369	30.9	2.16	3.92	2.88	2.77	2.72	2.62
	2039.061(7)	[5]											
$^{82}_{34}\mathrm{Se}$ \rightarrow $^{82}_{36}\mathrm{Kr}$	2997.9(3)	[44]	0.597	384	238	377	38.4	2.31	4.17	3.09	2.97	2.90	2.79
$^{96}_{40}$ Zr $\rightarrow ^{96}_{42}$ Mo	3356.097(86)	[45]	0.518	422	246	409	23.3	2.78	4.92	3.76	3.60	3.44	3.29
$^{100}_{42}\mathrm{Mo} \rightarrow ^{100}_{44}\mathrm{Ru}$	3034.40(17)	[46]	0.564	428	241	419	24.1	2.94	5.17	4.00	3.82	3.62	3.46
$^{116}_{~48}{\rm Cd} \rightarrow ^{116}_{~50}{\rm Sn}$	2813.50(13)	[47]	0.601	451	229	442	22.0	3.42	5.92	4.74	4.51	4.17	3.97
$^{128}_{52}\text{Te} \rightarrow ^{128}_{54}\text{Xe}$	865.87(131)	[48]	0.589	452	206	457	33.1	3.74	6.42	5.29	5.04	4.53	4.32
$^{130}_{52}$ Te $\rightarrow ^{130}_{54}$ Xe	2526.97(23)	[47]	0.589	452	206	457	33.1	3.74	6.42	5.29	5.04	4.53	4.32
$^{136}_{54}{\rm Xe} \rightarrow ^{136}_{56}{\rm Ba}$	2457.83(37)	[49]	0.606	476	217	465	15.2	3.91	6.67	5.57	5.31	4.71	4.49
$^{150}_{~60}\mathrm{Nd} \rightarrow ^{150}_{~62}\mathrm{Sm}$	3371.38(20)	[50]	0.519			514	16.7			6.50	6.20		
$^{238}_{92}\text{U} \rightarrow ^{238}_{94}\text{Pu}$	1437.3	[51]	0.546			774	17.5			14.58	13.90		

дополнительно учитывает обменный вклад в энергию электронов [27] и пространственную неоднородность [28]. Последовательное квазиклассическое разложение функционала плотности с учетом неоднородности можно найти в монографии Киржница [29]. В простейшем виде

$$E_{Z,N} = \int d\mathbf{r} \left(-\frac{Z}{r} n(\mathbf{r}) + c_1 n^{5/3}(\mathbf{r}) + c_2 n^{4/3}(\mathbf{r}) + c_3 \frac{(\nabla n(\mathbf{r}))^2}{n(\mathbf{r})} \right) + \frac{1}{2} \int d\mathbf{r} d\mathbf{r}' n(\mathbf{r}) \frac{1}{|\mathbf{r} - \mathbf{r}'|} n(\mathbf{r}').$$
(4)

Здесь $n(\mathbf{r})$ – плотность электронов, первое слагаемое под знаком интеграла – энергия взаимодействия электронов с ядром $E_{Z,N}^{C}$, второе слагаемое – кинетическая энергия, третье – обменная энергия, четвертое – градиентная поправка Вайзеккера [28]. Последнее слагаемое – энергия взаимодействия электронов. Коэффициенты c_i равны

$$c_1 = \frac{3}{10} (3\pi^2)^{2/3}, \quad c_2 = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{1/3}, \quad c_3 = \frac{\lambda}{8}.$$
 (5)

В феноменологических моделях используется значение $\lambda = 1/5$ [30, 31].

В работе [30] в рамках TFDW вычисляется энергия связи нейтральных атомов N, Ne, Ar, Kr, Xe с заполненными валентными оболочками. Параметризация результатов дает $E_{Z,Z} = -0.536 Z^{2.38}$, что

не сильно отличается от модели TF, где $E_{Z,Z}$ = -0.764Z^{7/3}. Энергия кулоновского взаимодействия электронов с ядром вычисляется с помощью известной функции экранирования. Интегрируя по частям выражение для $E_{Z,Z}^{C}$, лапласиан перебрасывается на кулоновский потенциал ядра, что дает дельта-функцию в нуле, умноженную на разность полного потенциала и потенциала ядра. Энергия взаимодействия с ядром оказывается равной $Z^{2}(a-b)$, параметры экранирующей функции а и b приведены в табл. 2 работы [30]. Фитирование дает $E_{Z,Z}^{C}$ = $= -1.270Z^{2.38}$ в согласии с теоремой вириала. Точность параметризации не хуже 0.5 %. Соответствующие результаты для \mathcal{M} показаны в табл. 1. Предсказания нерелятивистских моделей TF и TFDW ограничены значениями $Z \leq 54$.

Средние величины $\langle Z, Z | r_i^{-1} | Z, Z \rangle$, необходимые для оценки $E_{Z,Z}^{C}$ в методе DHF, табулированы в работах [32–35]. В работе [35] отдельно приводятся значения $E_{Z,Z}^{C}$. Результаты вычислений \mathcal{M} в рамках DHF [35] показаны в табл. 1.

Модели TF и DHF хорошо согласуются друг с другом и согласуются качественно с предсказаниями модели TFDW.

Дисперсия энергии возбуждения электронной оболочки определяется формулой

$$\mathcal{D} = \langle Z, Z | \hat{H}_{Z+2}^2 | Z, Z \rangle - \langle Z, Z | \hat{H}_{Z+2} | Z, Z \rangle^2.$$
(6)

С учетом уравнения (1) имеем

$$\frac{1}{4}\mathcal{D} = \sum_{ij} \langle Z, Z | \frac{1}{r_i} \frac{1}{r_j} | Z, Z \rangle - \langle Z, Z | \sum_i \frac{1}{r_i} | Z, Z \rangle^2.$$
(7)

Суммирование проводится в интервале $1 \le i, j \le Z$. В моделях ТF и TFDW двухчастичная плотность электронов не определена, однако, удается определить верхнюю границу дисперсии [17]:

$$\frac{1}{4}\bar{\mathcal{D}} = \int d\mathbf{r} \frac{1}{r^2} n(\mathbf{r}) - Z^{-1} \left(\int d\mathbf{r} \frac{1}{r} n(\mathbf{r}) \right)^2.$$
(8)

Вычисление интеграла от $1/r^2$ по распределению электронной плотности в модели TFDW приводит к значениям, которые можно параметризовать в виде

$$\int d\mathbf{r} \frac{1}{r^2} n(\mathbf{r}) = 5.81 Z^{2.00}.$$
(9)

Точность параметризации не хуже 5 %. Величины \bar{D} в моделях TF и TFDW приведены в табл. 1.

В методе DHF возможна оценка не только верхней границы дисперсии, но и самой дисперсии. В пренебрежении обменными эффектами \mathcal{D} находится из уравнения (7) после факторизации средней величины под знаком двойного суммирования. Соответствующие результаты, использующие табличные значения средних $1/r_i$ и $1/r_i^2$ для электронных орбит [34], показаны в табл. 1.

Обменные эффекты учитываются посредством усреднения двух-частичного оператора по волновой функции электронной оболочки атома. В однодетерминантном приближении волновая функция имеет вид

$$\Psi_{\alpha_1\alpha_2\dots\alpha_N} = \frac{1}{\sqrt{N!}} \epsilon^{s_1s_2\dots s_N} \phi^1_{\alpha_{s_1}} \phi^2_{\alpha_{s_2}} \dots \phi^N_{\alpha_{s_N}}, \quad (10)$$

где ϕ_{α}^{i} — волновые функции электронов, индекс i = 1, ..., N нумерует пространственные координаты и спиновые индексы, индекс α нумерует квантовые числа орбиталей. В рассматриваемом случае $\alpha =$ = (njlm), где n — главное квантовое число, j — полный угловой момент, m — его проекция, $l = j \pm 1/2$ орбитальный угловой момент. Фиксированный набор квантовых чисел ($\alpha_1, \alpha_2, \ldots, \alpha_N$) определяет состояние электронной оболочки атома. Тензор $\epsilon^{s_1s_2...s_N} =$ $= \pm 1$ осуществляет антисимметризацию.

Функции ϕ^i_{α} ортонормированы. Запишем их в виде произведения радиальной и угловой части:

$$\phi_{njlm}^{i} = R_{njl}(r_i)\Omega_{jm}^{l}(\mathbf{n}_i).$$
(11)

Здесь $R_{njl}(r)$ – вещественная функция, $\Omega_{jm}^l(\mathbf{n})$ – шаровой спинор, зависящий от единичного вектора $\mathbf{n} = \mathbf{r}/|\mathbf{r}|$. Обозначим через \varkappa_{njl} числа заполнения

уровней с квантовыми числами (njl). В случае полностью заполненных уровней, а также случаях, допускающих для каждой пары (jl) существование не более одного частично заполненного уровня с максимальным угловым моментом, $j^{\max} = \varkappa_{njl}(2j + 1 - \varkappa_{njl})/2$, можно упростить выражение (7), заменив суммирование по электронам суммированием по уровням:

$$\frac{1}{4}\mathcal{D} = \sum_{njl} \varkappa_{njl} \langle njl|r^{-2}|njl\rangle - \sum_{nn'jl} \min(\varkappa_{njl}, \varkappa_{n'jl}) \langle njl|r^{-1}|n'jl\rangle^2.$$
(12)

Матричные элементы h(r) определены согласно

$$\langle njl|h(r)|n'jl\rangle = \int r^2 dr h(r) R_{njl}(r) R_{n'jl}(r).$$
(13)

Сумма диагональных компонент n = n' уравнения (12) совпадает с правой частью уравнения (7) при факторизации среднего значения под знаком двойной суммы, как это предполагается в оценках TF и TFDW. Компоненты $n \neq n'$ во втором слагаемом уравнения (12) связаны с обменными эффектами. Обменные эффекты уменьшают дисперсию.

В методе RHF функции $R_{njl}(r)$ табулированы [32]. Для вычисления дисперсии с учетом обменных эффектов требуется знание переходных матричных элементов $\langle njl|r^{-1}|n'jl\rangle$ и $\langle njl|r^{-2}|n'jl\rangle$. В таблице 2 представлены результаты вычислений для атома молибдена в методе RHF. Диагональные матричные элементы сравниваются с таковыми в методе DHF [34]. Заметна недооценка средних величин в сравнении с методом DHF, что обусловлено смещением в релятивистских моделях электронной плотности на меньшие расстояния [37]. Сходная картина имеет место для других атомов. Соответственно, дисперсия в методе RHF без учета обменных вкладов также меньше предсказаний метода DHF.

Средние значения 1/r и $1/r^2$ на внутренних и внешних орбитах атомов соотносятся примерно как Z:1 и $Z^2:1$, что подтверждается значениями диагональных матричных элементов в табл. 2. В тех случаях, когда полный угловой момент частично заполненного уровня не является максимальным и/или когда частично заполненных уровней для некоторой пары (jl) несколько, формула (12) используется для приближенной оценки. Поскольку в среднетяжелых и тяжелых атомах основной вклад в дисперсию дают электроны на заполненных внутренних оболочках, можно ожидать, что точность такой оценки достаточно высока. Результаты вычислений \mathcal{D} в методе RHF с учетом обменных вкладов представлены в табл. 1. Для сравнения приведены результаты вычислений без учета обменных вкладов. Согласие моделей TF, TFDW, RHF и DHF является удовлетворительным. Для приложений можно рекомендовать значения энергии возбуждения – \mathcal{M}_{DHF} , для дисперсии – $\mathcal{D}_{DHF/b}$, как теоретически наиболее обоснованные. Оценка $\mathcal{D}_{DHF/b}$ отличается от $\mathcal{D}_{DHF/a}$ тем, что включает обменные поправки, найденные по методу RHF. С учетом приближений неопределенности в \mathcal{M}_{DHF} и $\mathcal{D}_{DHF/b}$ оцениваются на уровне $\leq 10\%$.

В нерелятивистских моделях TF, TFDW и RHF \mathcal{M} слабо зависит от Z, в то время как \mathcal{D} растет примерно как Z^2 . Данное поведение согласуется с выделенной ролью К электронов, нерелятивистская теория возбуждения которых в процессах β -распада развита в работах [15, 16].

Параметр K_Z , приведенный в табл. 1, представляет собой амплитуду перекрытия волновой функции всех электронов основного состояния оболочки родительского атома с волновой функцией оболочки дважды ионизированного дочернего атома, электроны которого сохранили свою исходную конфигурацию. Поскольку заряды ядер до и после встряхивания отличаются на двойку, соответствующие волновые функции электронов не ортогональны, вследствие чего перекрытие волновых функций с одинаковыми квантовыми числами не равно единице. Это приводит к возбуждению дочернего иона. Величина K_Z^2 задает вероятность наследования электронами квантовых чисел и, соответственно, отсутствия эффектов встряхивания. Для оценки K_Z требуется многочастичный расчет методом DHF, который был выполнен с использованием программного пакета GRASP-2018 [36, 37]. Для каждого родительского атома из табл. 1 с электронной конфигурацией и полным угловым моментом, соответствующим основному состоянию электронной оболочки родительского атома, получен набор больших $f^+_{njl}(r)$ и малых $f^-_{njl}(r)$ радиальных компонент волновых функций электронов для всех квантовых чисел (njl). Аналогично для дочернего иона с зарядом ядра Z + 2 получен набор радиальных компонент $\tilde{f}_{njl}^{\pm}(r)$. Амплитуда перекрытия \mathcal{O}_{njl} волновых функций электронов с одинаковыми квантовыми числами равна

$$\mathcal{O}_{njl} = \int \left(\tilde{f}_{njl}^{+}(r) f_{njl}^{+}(r) + \tilde{f}_{njl}^{-}(r) f_{njl}^{-}(r) \right) r^2 dr$$

В однодетерминантном приближении и без учета обменных слагаемых амплитуда K_Z равна произведе-

нию амплитуд \mathcal{O}_{njl} в степени, равной заселенности соответствующего уровня:

$$K_Z = \prod_{njl} \left(\mathcal{O}_{njl} \right)^{\varkappa_{njl}}.$$
 (14)

В широком диапазоне атомных номеров Z значения K_Z оказываются близки к величине 0.5. Вероятность $K_Z^2 \sim 0.25$ достаточно мала, что указывает на доминирование в вероятности каналов с возбужденной электронной оболочкой атомов [22]. В описанном выше подходе для вычисления K_Z предполагается, что результирующая конфигурация дочернего иона является основным состоянием при наследовании квантовых чисел электронов. Однако спектроскопический анализ показывает, что это условие не всегда выполняется. Например, ион Ті III, образовавшийся после $0\nu 2\beta$ -распада Са с электронной конфигурацией $[Ar]4s^2$, в основном состоянии имеет конфигурацию $[Ar]3d^2$. Строго говоря, этот факт означает, что перекрытие в точности равно нулю: $K_Z = 0$, следовательно, распад с вероятностью единица сопровождается возбуждением электронной оболочки атома. Энергия конфигурации $[Ar]4s^2$ Ti III превышает таковую конфигурации $[Ar]3d^2$ на 12.7 эВ. Аналогичная ситуация имеет место в двойном β -распаде атомов Zr, Mo, Nd и U. В перечисленных случаях амплитуда K_Z , приведенная в табл. 1, является амплитудой перехода в наиболее вероятное возбужденное состояние электронной оболочки дочернего иона. Примерно в каждом четвертом случае двойной β -распад Ca, Zr, Mo, Nd и U сопровождается переходом электронной оболочки атомов из фиксированного возбужденного состояния в основное состояние с излучением серии фотонов ультрафиолетового диапазона. Наблюдение этих фотонов, энергия которых хорошо известна, может служить вспомогательной сигнатурой для идентификации распада.

Знание параметров K_Z , \mathcal{M} и \mathcal{D} позволяет строить простейшие модели распределения энергии β электронов в $0\nu 2\beta$ -распаде. С вероятностью K_Z^2 электронная оболочка атома остается в основном состоянии, с вероятностью $1 - K_Z^2$ переходит в возбужденное состояние. Условную вероятность перехода в возбужденное состояние с энергией ϵ в интервале $d\epsilon$ обозначим $w(\epsilon/Q^*)d\epsilon/Q^*$, где $Q^* = Q - I_2$ - энерговыделение.

Полная плотность вероятности принимает вид

$$p(\epsilon) = K_Z^2 \delta(\epsilon) + (1 - K_Z^2) w(\epsilon/Q^*)/Q^*.$$
(15)

В качестве w(x) используется биномиальное распределение, находящее широкое применение при мо-

Таблица 2. Матричные элементы $\langle njl|r^{-1}|n'jl\rangle$ и $\langle njl|r^{-2}|n'jl\rangle$ для электронных орбиталей $n \leq n'$ в атоме молибдена. Вычисления используют волновые функции электронов метода RHF [32] с вырождением по *j*. В нижней части таблицы помещены диагональные матричные элементы n = n' релятивистского метода DHF [34]; верхняя и нижняя строки P и D волн относятся к j = l + 1/2 и j = l - 1/2, соответственно

$_{42}\mathrm{Mo}$												
$\langle njl r^{-1} n'jl\rangle$	1S	2S	3S	4S	5S		2P	3P	4P		3D	4D
1S	41.49	7.962	3.231	-1.255	0.321							
2S		9.378	2.160	-0.803	0.204	2P	9.339	-1.858	-0.626			
3S			3.264	-0.665	0.163	3P		3.164	0.582	3D	2.970	-0.361
4S				1.171	-0.149	4P			1.052	4D		0.714
5S					0.327							
[34]	43.55	9.939	3.409	1.209	0.322		9.412	3.190	1.059		2.958	0.695
							9.879	3.300	1.089		2.987	0.705
$\langle njl r^{-2} n'jl\rangle$	1S	2S	3S	4S	5S		2P	3P	4P		3D	4D
1S	3455.	984.9	410.3	-160.1	40.94							
2S		357.8	141.7	-55.02	14.06	2P	118.4	-37.69	-13.17			
3S			65.20	-24.42	6.223	3P		21.34	6.697	3D	11.17	-2.120
4S				10.41	-2.564	4P			3.157	4D		0.965
5S					0.748							
[34]	4005.	439.4	80.03	12.73	0.830		120.7	21.93	3.243		11.11	0.930
							141.5	25.50	3.744		11.37	0.960

делировании случайных процессов [41]. Распределение обладает двумя свободными параметрами, которые фиксируются нормировкой на среднее значение $\mathcal{M} = \int_{0}^{Q^*} d\epsilon \epsilon p(\epsilon)$ и средний квадрат энергии $\mathcal{D} + \mathcal{M}^2 = \int_{0}^{Q^*} d\epsilon \epsilon^2 p(\epsilon).$

Оценим максимальное отклонение, ΔT_{max} , энергии β -электронов от энерговыделения Q^* , основываясь на предсказаниях модели DHF. При фиксированной вероятности, p_T , уравнение $p_T = \int_0^{\Delta T_{\text{max}}} d\epsilon p(\epsilon)$ позволяет найти ΔT_{max} . Для $p_T = 0.9$ отклонение от Q^* не превышает $\Delta T_{\text{max}} = 180$ эВ (Ca), 18 эВ (Ge), 19 эВ (Se), $\Delta T_{\text{max}} < 5$ эВ для Zr, Mo, Cd, Te, Xe, Nd, U. С вероятностью $p_T = 0.95$ отклонение не превышает $\Delta T_{\text{max}} = 1.16$ кэВ (Ca), 0.55 кэВ (Ge), 0.44 кэВ (Se), 0.25 кэВ (Zr), 0.18 кэВ (Mo), 69 эВ (Cd), 22 эВ (¹²⁸Te), 30 эВ (¹³⁰Te), 19 эВ (Xe), 11 эВ (Nd), $\Delta T_{\text{max}} < 5$ эВ для U. Для более точных оценок необходима детализация динамики многоэлектронных процессов.

В калориметрических детекторах разрешение по энергии достигает нескольких кэВ (GERDA), при этом измеряется полная энергия реакции за вычетом энергии нейтрино. В эксперименте SuperNEMO с помощью трекового калориметра в $0\nu 2\beta$ -распаде селена измеряется энергия β -электронов с точностью 4% при энергии Q. Для наблюдения эффектов, связанных с возбуждением электронной оболочки атомов, требуется развитие новых технологий, позволяющих существенно улучшить разрешение детекторов по энергии.

Таким образом, для всех атомов, $2\nu 2\beta$ -распад которых наблюдался экспериментально, определены амплитуды перекрытия электронных оболочек родительского атома и дочернего иона. В двойном βраспаде атомов ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹⁵⁰Nd и ²³⁸U с вероятностью ~ 1/4 электронная оболочка оказывается в низшем возбужденном состоянии с квантовыми числами, унаследованными от родительского атома. Эти распады сопровождаются последующим переходом в основное состояние с характеристическим излучением фотонов ультрафиолетового диапазона. В атомах ⁴⁸Ca, ⁷⁶Ge, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe электронная оболочка дочернего иона с вероятностью ~ 1/4 переходит в основном состоянии и с вероятностью ~ 3/4 – в возбужденное. Для всех рассмотренных случаев найдены среднее значение и дисперсия энергии возбуждения. Зависимость от атомного номера указывает на доминирующий вклад в дисперсию механизма Фейнберга–Мигдала. Для безнейтринной моды двойного β-распада определены вероятностные отклонения энергии β-электронов от энерговыделения.

Работа выполнена при поддержке гранта # 23-22-00307 Российского научного фонда.

- D.G. Phillips II, W.M. Snow, K. Babu et al. (Collaboration), Phys. Rep. 612, 1 (2016).
- J. Schechter and J. W. F. Valle, Phys. Rev. D 25, 2951 (1982).

- M. Hirsch, S. Kovalenko, and I. Schmidt, Phys. Lett. B 642, 106 (2006).
- 4. S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979).
- 5. The GERDA Collaboration, Nature 544, 47 (2017).
- G. Anton, I. Badhrees, P.S. Barbeau et al. (EXO-200 Collaboration), Phys. Rev. Lett. **123**, 161802 (2019).
- R. Arnold, C. Augier, J.D. Baker et al. (NEMO-3 Collaboration), Phys. Rev. D 89, 111101(R) (2014).
- R. Arnold, C. Augier, J.D. Baker et al. (NEMO-3 Collaboration), Phys. Rev. D 92, 072011 (2015).
- D. Q. Adams, C. Alduino, K. Alfonso et al. (CUORE Collaboration), Phys. Rev. Lett. **124**, 122501 (2020).
- D. Q. Adams, C. Alduino, K. Alfonso et al. (CUORE Collaboration), Nature 604, 53 (2022).
- S. Abe, S. Asami, M. Eizuka et al. (KamLAND-Zen Collaboration), Phys. Rev. Lett. **130**, 051801 (2023).
- F. Šimkovic, A. Faessler, V. Rodin, P. Vogel, and J. Engel, Phys. Rev. C 77, 045503 (2008).
- 13. J. T. Suhonen, Front. Phys. 5, 55 (2017).
- Ф. Шимковиц, УФН **191**, 1307 (2021) [F. Šimkovic, Phys.-Uspekhi **64**, 1238 (2021)].
- 15. E. L. Feinberg, J. Phys. (USSR) 4, 423 (1941).
- 16. А. Мигдал, ЖЭТФ **11**, 207 (1941).
- М.И. Криворученко, К.С. Тырин, Ф.Ф. Карпешин, Письма в ЖЭТФ 117, 887 (2023)
 [М. I. Krivoruchenkoa, K. S. Tyrin, and F. F. Karpeshin, JETP Lett. 117, 884 (2023)].
- I. Lindgren, Journal of Electron Spectroscopy and Related Phenomena 137–140, 59 (2004).
- D.S. Akerib, S. Alsum, H.M. Araújo et al. (LUX Collaboration), Phys. Rev. Lett. **122**, 131301 (2019).
- E. Aprile, J. Aalbers, F. Agostini et al. (XENON Collaboration), Phys. Rev. Lett. **123**, 241803 (2019).
- P. Agnes, I.F.M. Albuquerque, T. Alexander et al. (DarkSide Collaboration), Phys. Rev. Lett. **130**, 101001 (2023).
- M. I. Krivoruchenko and K. S. Tyrin, Eur. Phys. J. A 56, 16 (2020).
- 23. F.F. Karpeshin, M. B. Trzhaskovskaya, and L. F. Vitushkin, Yad. Fiz. **83**, 344(2020)[F. F. Karpeshin, M. B. Trzhaskovskaya, and L.F. Vitushkin, Phys. At. Nucl. 83, 608 (2020)].
- F. F. Karpeshin and M. B. Trzhaskovskaya, Yad. Fiz. 85, 387 (2022) [F. F. Karpeshin and M. B. Trzhaskovskaya, Phys. At. Nucl. 85 (2020)].
- F. F. Karpeshin and M. B. Trzhaskovskaya, Phys. Rev. C 107, 045502 (2023).
- L. D. Landau and E. M. Lifschitz, Quantum Mechanics:Non-relativistic Theory. Course of Theoretical Physics, 3rd ed., Pergamon, London (1977), v. 3.
- P. A. M. Dirac, Math. Proc. Cambridge Phil. Soc. 26, 376 (1930).

- C. F. von Weizsäcker, Zeitschrift f
 ür Physik 96, 431 (1935).
- D. A. Kirzhnits, Field Theoretical Methods in Many-Body Systems, Pergamon Press, Oxford (1967), p. 394.
- E. K. U. Gross and R. M. Dreizler, Phys. Rev. A 20, 1798 (1979).
- W. Stich, E. K. U. Gross, P. Malzacher, and R. M. Dreizler, Z. Phys. A **309**, 5 (1982).
- E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974).
- 33. C. C. Lu, T. A. Carlson, F. B. Malik, T. C. Tucker, and C. W. Nestor, Jr., At. Data Nucl. Data Tables 3, 1 (1971).
- J. P. Desclaux, At. Data Nucl. Data Tables 12, 311 (1973).
- K.-N. Huang, M. Aoyagi, M. H. Chen, B. Grasemann, and H. Mark, At. Data Nucl. Data Tables 18, 243 (1976).
- K. G. Dyall, I. P. Grant, C. T. Johnson, F. A. Parpia, and E. P. Blummer, Comput. Phys. Commun. 55, 425 (1989).
- 37. I. P. Grant, Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation, Springer Science + Business Media, N.Y. (2007).
- 38. I. M. Band, M. A. Listengarten, M. B. Trzhaskovskaya, and V. I. Fomichev, Computer Program Complex RAINE I-IV, Leningrad Nuclear Physics Institute Reports LNPI-289 (1976), LNPI-298 (1977), LNPI-299 (1977), and LNPI-300 (1977).
- I. M. Band, M. B. Trzhaskovskaya, C. W. Nestor Jr., P. O. Tikkanen, and S. Raman, At. Data Nucl. Data Tables 81, 1 (2002).
- 40. A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team (2022), NIST Atomic Spectra Database (ver. 5.10), https://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg; MD. DOI: https://doi.org/10.18434/T4W30F.
- В. С. Королюк, Н.И. Портенко, А.В. Скороход, А.Ф. Турбин, Справочник по теории вероятностей и математической статистике, Наука, М. (1985), 640 с.
- 42. A. A. Kwiatkowski, T. Brunner, J. D. Holt, A. Chaudhuri, U. Chowdhury, M. Eibach, J. Engel, A. T. Gallant, A. Grossheim, M. Horoi, A. Lennarz, T. D. Macdonald, M. R. Pearson, B. E. Schultz, M. C. Simon, R. A. Senkov, V. V. Simon, K. Zuber, and J. Dilling, Phys. Rev. C 89, 045502 (2014).
- M. Suhonen, I. Bergström, T. Fritioff, Sz. Nagy, A. Solders, and R. Schuch, J. Instrum. 2, 06003 (2007).
- 44. D. L. Lincoln, J. D. Holt, G. Bollen, and M. Brodeur, S. Bustabad, J. Engel, S. J. Novario, M. Redshaw, R. Ringle, and S. Schwarz, Phys. Rev. Lett. **110**, 012501 (2013).

Письма в ЖЭТФ том 118 вып. 7-8 2023

- M. Alanssari, D. Frekers, T. Eronen et al. (Collaboration), Phys. Rev. Lett. **116**, 072501 (2016).
- 46. S. Rahaman, V.-V. Elomaa, T. Eronen, J. Hakala, A. Jokinen, J. Julin, A. Kankainen, A. Saastamoinen, J. Suhonen, C. Weber, and J. Aysto, Phys. Lett. B 662, 111 (2008).
- S. Rahaman, V.-V. Elomaa, T. Eronen, J. Hakala,
 A. Jokinen, A. Kankainen, J. Rissanen, J. Suhonen,
 C. Weber, and J. Aysto, Phys. Lett. B 703, 412 (2011).
- N.D. Scielzo, S. Caldwell, G. Savard, J.A. Clark, C.M. Deibel, J. Fallis, S. Gulick, D. Lascar,

A.F. Levand, G. Li, J. Mintz, E.B. Norman, K.S. Sharma, M. Sternberg, T. Sun, and J. van Schelt, Phys. Rev. C 80, 025501 (2009).

- M. Redshaw, E. Wingfield, J. McDaniel, and E. G. Myers, Phys. Rev. Lett. 98, 053003 (2007).
- V.S. Kolhinen, T. Eronen, D. Gorelov, J. Hakala, A. Jokinen, A. Kankainen, I.D. Moore, J. Rissanen, A. Saastamoinen, J. Suhonen, and J. Äystö, Phys. Rev. C 82, 022501 (2010).
- Table of isotopes, Ed. by R. B. Firestone, V. S. Shirley, C. M. Baglin, S. Y. Frank Chu, and J. Zipkin, Wiley-Interscience, N.Y. (1996).