Первопринципные исследования адсорбции Li и Na на поверхности монослоя MgCl₂

С. В. Устюжанина⁺, *А. А. Кистанов*⁽⁾+*1)

+Институт проблем сверхпластичности металлов РАН, 450001 Уфа, Россия

* Лаборатория Металлы и сплавы при экстремальных воздействиях, Уфимский университет науки и технологий, 450076 Уфа, Россия

> Поступила в редакцию 14 августа 2023 г. После переработки 4 октября 2023 г. Принята к публикации 5 октября 2023 г.

С использованием первопринципных расчетов исследована динамическая устойчивость нового монослоя дихлорида магния (MgCl₂) и образование в нем точечных дефектов. Изучена возможность использования монослоя MgCl₂ в литий(Li)- и натрий(Na)-ионных батареях. Показано, что монослой MgCl₂ обладает динамической стабильностью, но может содержать точечные дефекты. Эти точечные дефекты могут улучшить адсорбционную способность монослоя MgCl₂ по отношению к атомам Li и Na. Результаты, показанные в этой работе, делают монослой MgCl₂ перспективным материалом для применения в Li- и Na-ионных батареях.

DOI: 10.31857/S1234567823210097, EDN: ptdeba

Введение. Недавно была предсказана и исследована новая группа двумерных (2Д) материалов, двумерных дихлоридов переходных металлов [1]. Кроме того, повышенное внимание уделяется другим 2Д хлоридам металлов, таким как 2Д MgCl₂, в связи с их исключительными оптоэлектронными и магнитными свойствами [2, 3]. К примеру, в работе [4] было показано, что монослой обладает шириной запрещенной зоны, равной 6.08 эВ.

В настоящее время также растет спрос на Li- и Na-ионные аккумуляторы для различных применений, в том числе для электромобилей, возобновляемых источников энергии и систем хранения энергии [5,6]. В последнее время интерес исследователей направлен на новый класс хлоридов лития изза их очень высокой окислительной стабильности [7]. Различные хлориды переходных металлов, такие как NiCl₂ и KNiCl₃, были протестированы в качестве материалов катода в Li- и Na-ионных батареях и показали многообещающие результаты благодаря их сравнительно высокой емкости и напряжению [8,9]. Кроме того, мезопористый углерод, наполненный CuCl₂, был предложен в качестве катодного материала для литий-ионных аккумуляторов с высокой емкостью из-за его обратимой реакции переноса двух электронов, обеспечивающей очень высокую обратимую емкость [10].

Однако, насколько известно, нет исследований по возможному применению монослоя MgCl₂ в качестве материала для применения в Li- и Na-ионных батареях. Кроме того, недостаточно изучено влияние образования типичных точечных дефектов в монослое MgCl₂ на его адсорбционную способность по отношению к атомам Li и Na. Поэтому в данной работе влияние типичных точечных дефектов и возможность применения монослоя MgCl₂ в Li- и Na-ионных батареях исследуется с помощью теории функционала плотности с использованием первопринципных расчетов.

Вычислительные методы. Структура монослоя MgCl₂ была спроектирована на основе геометрии примитивной элементарной ячейки монослоя MgCl₂, имеющейся в базе данных 2DMatPedia (ID 2dm-3734) [11], и найденных ранее 2Д дихлоридов переходных металлов [1], а также экспериментальных данных [12] по монослою MgCl₂. Расчеты проводились методом плоских волн, реализованным в пакете Vienna Ab initio Simulation Package [13]. Pacчеты по оптимизации геометрии были выполнены с использованием обменно-корреляционного функционала Пердью-Берка-Эрнзергофа (РВЕ) в приближении обобщенного градиента (GGA) [14]. Оптимизация была остановлена, как только все компоненты всех атомных сил стали меньше 10^{-4} $_{3}B/Å$, а изменение полной энергии было меньше 10^{-8} эВ. Первая зона Бриллюэна была отобрана с сеткой k-точек

¹⁾e-mail andrei.kistanov.ufa@gmail.com

 $10 \times 10 \times 1$ для элементарной ячейки и сеткой k-точек 3 × 3 × 1 для суперячейки. Энергия обрезки потенциала была выбрана равной 520 эВ. Периодические граничные условия применялись вдоль поперечных направлений в плоскости, а вакуумное пространство 20 Å вводилось в направлении, перпендикулярном плоскости поверхности. Для построения фононного спектра, расчеты, основанные на теории возмущений функционала плотности (DFPT), с помощью программного пакета Phonopy [15], были выполнены для суперячейки монослоя MgCl₂ размером $3 \times 3 \times 1$ с использованием сетки k-точек $2 \times 2 \times 1$. Поправка DFT-D3 [16] использовалась для учета Вандер-Ваальсовых взаимодействий между атомами Li и Na и поверхностью монослоя MgCl₂. Для исследования моно вакансионных (MB) дефектов и энергии адсорбции рассматривалась супер ячейка MgCl₂ размером $4 \times 4 \times 1$ элементарных ячеек.

Энергия образования $E_{\rm form}$ MB дефектов в монослое MgCl₂ рассчитывалась следующим образом:

$$E_{\rm form} = E_{\rm perfect} - E_{\rm defect} - N_{\rm Mg} E_{\rm Mg} - N_{\rm Cl} E_{\rm Cl}, \quad (1)$$

где E_{perfect} и E_{defect} – полные энергии чистого и содержащего MB монослоя MgCl₂, E_{Mg} и E_{Cl} – энергии атомов Mg и Cl, соответственно, рассчитанные из объемных фаз материалов.

Энергия адсорбции атомов Li и Na на поверхности монослоя MgCl₂ рассчитывалась следующим образом:

$$E_a = E_{\text{MgCl2/mol}} - E_{\text{MgCl2}} - E_{\text{atom}}, \qquad (2)$$

где $E_{\rm MgCl2/mol}$ – полная энергия монослоя MgCl₂, адсорбированного Li(Na), $E_{\rm MgCl2}$ и $E_{\rm atom}$ – полные энергии исходного монослоя MgCl₂ и свободного атома Li(Na), соответственно.

Заселенность кристаллических орбиталей Гамильтона (Crystal Orbital Hamilton Populations – COHP) [17] рассчитывалась с помощью программы LOBSTER [18].

Результаты и обсуждения. На рисунке 1а показана структура элементарной ячейки монослоя MgCl₂. Он принадлежит к тригональной пространственной группе симметрии 164 P-3m1 и состоит из одного атома Mg и двух атомов Cl. Оптимизированные структурные параметры монослоя MgCl₂ собраны в табл. 1. Полученные данные по расчету параметров решетки монослоя MgCl₂ a = b = 3.64 Å аналогичны ранее представленным результатам [19] и соотносятся с экспериментальными данными [20]. Для подтверждения динамической стабильности монослоя MgCl₂ рассчитан его фононный спектр, который показан на рис. 1b. Видно, что все фононные

Рис. 1. (Цветной онлайн) Структура элементарной ячейки (a), фононный спектр (b), *p*COHP (c) и PDOS (d), где уровень Ферми показан красной пунктирной линией, для монослоя MgCl₂

дисперсионные кривые монослоя MgCl₂ положительны во всей зоне Бриллюэна, что свидетельствует о динамической устойчивости монослоя MgCl₂. Стоит отметить, что ранее, в работе [21], уже был расчитан фононный спектр монослоя MgCl₂, наши результаты показывают высокую сходимость с ранее представленными.

Таблица 1. Структурные параметры монослоя MgCl₂

$a, \mathrm{\AA}$	b, Å	α	β	γ
3.64	3.64	90	90	120

В 2Д материалах обычно присутствуют различные точечные дефекты, которые самопроизвольно образуются в процессе их изготовления и эксплуатации [22–24]. Поэтому здесь рассматривается устойчивость и образование точечных дефектов в монослое MgCl₂, в частности, MB дефектов. В данной работе рассматриваются следующие дефекты: MB атома Cl (MB_{Cl}) и MB атома Mg (MB_{Mg}). Термическая устойчивость этих MB-дефектов в монослое MgCl₂ оценивается по энергии их образования $E_{\rm form}$. Установлено, что дефект MB_{Cl} имеет низкую $E_{\rm form} = 5.86$ эB,

Рис. 2. (Цветной онлайн) Три наиболее энергетически выгодные конфигурации атомов Li и Na на поверхности монослоя MgCl₂, положение атомов Li и Na показано, как P1, P2 и P3

в то время как дефект MB_{Mg} имеет гораздо более высокую $E_{\text{form}} = 7.90 \,\text{эB}$, что сравнимо с E_{form} MB в графене (7.50 эВ) [25] и MB дефектами в хлоридах металлов (до 7.37 эВ) [1]. Кроме того, прочность связи в материале можно приблизительно оценить при помощи СОНР анализа [26, 27]. Зная площадь под кривой рСОНР, можно дать оценку энергии связи в материале. pCOHP и для монослоя MgCl₂ представлен на рис. 1с. Из рисунке 1с также видно, что состояния в интервале энергий от -0.2 эВ до 4.7 эВ являются разрыхляющими и не дают вклад в химическую связь Mg с Cl. Согласно рис. 1d, где представлена диаграмма парционной плотности состояний (PDOS) монослоя MgCl₂, данными разрыхляющими орбиталями являются 2*p*-орбитали Cl и 2*p*_x- и $2p_y$ -орбитали Mg. Полученное значение площади под кривой pCOHP (-*I*pCOHP), иными словами энергия связи Cl-Mg, составляет ~ 0.84 эВ. Таким образом, для удаления одного атома хлора с образованием MB_{Cl}, требующее разрыва трех связей с ближайшими атомами Mg, потребуется ~ 2.52 эB, что существенно ниже энергии формирования MB_{Cl}, полученной согласно формулы (1). Стоит отметить, что данные по расчетам E_{form} MB и COHP анализа дают результаты, отличающиеся более чем в 2 раза. Необходимо подчеркнуть тот факт, что химический потенциал атомов Mg и Cl в объемной фазе отличается от такового в их соединении [28], что может приводить к меньшей точности в оценке результатов, полученных для энергии формирования MB_{Cl}. Тем не менее, оба метода подтверждают низкую энергию формирования моновакансий в монослое MgCl₂, относительно других 2Д материалов, таких как графен.

Были рассмотрены различные атомные конфигурации атомов Li и Na на поверхности монослоя MgCl₂. В частности, рассмотрены позиции атомов Li и Na – над атомом Cl первого слоя, над атомом Mg второго слоя, над атомом Cl третьего слоя, над центром связи Cl-Mg и над центром шестичленного кольца. На рисунке 2 представлены три наибо-

лее энергетически выгодные конфигурации (Р1-Р3) атомов Li и Na на поверхности монослоя MgCl₂ из всех рассмотренных в данной работе. Из рисунка 2 следует, что E_a Li и Na на поверхности монослоя MgCl₂ для конфигурации P3 (рис. 2с) значительно ниже таковой для случаеа P1 (рис. 2a) и P2 (рис. 2b), на ~ 0.1 эВ в случае Li и на ~ 0.2 эВ в случае Na. Кроме того, обнаружено, что полная энергия систем Li- $MgCl_2$ и Na- $MgCl_2$, представленных на рис. 2c (конфигурация P3), ниже таковой для систем Li-MgCl₂ и Na-MgCl₂, представленных на рис. 2a, b. Далее, в работе рассматривался только случай для наиболее энергетически выгодной конфигурации Li и Na на поверхности монослоя MgCl₂, т.е. конфигурация P3 (рис. 2с). Далее, на рис. За показана данная энергетически выгодная конфигурация атома Li, адсорбированного на поверхности монослоя MgCl₂. Атом Li расположен над атомом Mg на расстоянии 0.15 Å от поверхности. Видно, что адсорбированный атом Li смещает атом Mg из положения равновесия. Расчетная энергия адсорбции E_a одного атома Li на поверхности монослоя MgCl₂ оказалась равной -0.37 эВ (см. табл. 2). Учитывая обнаруженную сравнительно низкую энергию образования МВ дефектов в монослое MgCl₂ и наблюдаемое смещение атома Mg, активированное адсорбцией Li, важно учитывать взаимодействие Li с поверхностью монослоя $MgCl_2$, содержащей MB дефект. На рисунке 3b показана конфигурация атома Li, адсорбированного на монослое $MgCl_2$, содержащем MB_{Cl} , при расположении Li на дефекте MB_{Cl}. В этом случае атом Li находится в шестиугольнике на расстоянии 0.97 Å, при этом значение E_a составляет -1.94 эВ (см. табл. 2). На рисунке 3с показана адсорбция атома Li на монослое MgCl₂, содержащем MB_{Mg} дефект. После оптимизации геометрии структуры атом Li занимает свободное место на MB_{Mg} . В этом случае значение E_a составляет -6.67 эВ (см. табл. 2), что свидетельствует об экзотермическом и самопроизвольном процессе адсорбции атома Li на монослое MgCl₂, содержащем

Рис. 3. (Цветной онлайн) Чистый (a), содержащий MB_{Cl} (b) и содержащий MB_{Mg} (c) монослой $MgCl_2$ с адсорбиров анным атомом Li

MB_{Mg}. Как известно, тепловое самовозгорание материалов может ускоряться биохимическим или адсорбционным самонагревом [29], ввиду чего существует опасность самовозгарания устройств, таких как Li- и Na-ионные батареи. Таким образом, Li- и Na-ионные батареи на основе монослоя MgCl₂, ввиду больших отрицательных энергиях абсорбции атомов Li и Na на его поверхности, могут быть подвержены данному эффекту.

Таблица 2. Энергия адсорбции Li и Na на моносло
е ${\rm MgCl}_2$

	Li	Na
Монослой MgCl ₂	-0.37 эВ	-0.38 $3B$
Монослой $MgCl_2$ с MB_{Cl}	−1.94 эВ	-1.59 эВ
Монослой MgCl ₂ с MB _{Mg}	-6.67 эВ	$-5.68 \ \mathrm{sB}$

На рисунке 4а показана наиболее энергетически выгодная конфигурация атома Na на поверхности монослоя MgCl₂. Атом Na расположен над атомом

Рис. 4. (Цветной онлайн) Чистый (a), содержащий MB_{Cl} (b) и содержащий MB_{Mg} (c) монослой $MgCl_2$ с адсорбированным атомом Na

Mg на расстоянии 1.15 Å от поверхности. Видно, что адсорбированный атом Na смещает атом Mg из положения равновесия, как это было в случае с атомом Li. Расчетная энергия адсорбции E_a одного атома Na на поверхности монослоя $MgCl_2$ равна $-0.38 \Im B$ (см. табл. 2). На рисунке 4b показана конфигурация атома Na, адсорбированного на монослое MgCl₂, содержащем MB_{Cl}, когда атом Na находится на дефекте MB_{Cl}. В этом случае атом Na находится в шестиугольнике на расстоянии 1.42 Å от поверхности моносля MgCl₂, при этом значение E_a равно -1.59 эВ (см. табл. 2). На рисунке 4с показана адсорбция атома Na на монослое MgCl₂, содержащем CBMg. После оптимизации геометрии структуры атом Na занимает свободное место на MB_{Mg}. В этом случае значение E_a составляет всего $-5.68 \, \text{эВ}$ (см. табл. 2), что свидетельствует об экзотермическом и самопроизвольном процессе адсорбции атома Na на монослое MgCl₂, содержащем МВ_{Мд}.

Стоит отметить, что E_a атома Na на монослое

	$\Delta q \ [e]$						
	Li/Na	Cl_1	Cl_2	Cl_3	Cl_4	Cl_5	Cl_6
Li на MgCl ₂	1	-0.032	-0.034	-0.034			
	(донор)	(акцептор)	(акцептор)	(акцептор)			
Li MgCl ₂ c MB_{Cl}	1	-0.063	-0.064	-0.067			
	(донор)	(акцептор)	(акцептор)	(акцептор)			
Li MgCl ₂ c MB_{Mg}	1	0.112	0.111	0.113	0.112	0.110	0.11
	(донор)						
Nа на $MgCl_2$	0.867	-0.005	-0.005	-0.007			
	(донор)	(акцептор)	(акцептор)	(акцептор)			
Na MgCl ₂ c MB_{Cl}	0.907	-0.038	-0.036	-0.036			
	(донор)	(акцептор)	(акцептор)	(акцептор)			
Na MgCl ₂ c MB_{Mg}	0.890	0.059	0.060	0.060			
	(донор)	(донор)	(донор)	(донор)			

Таблица 3. Величина переноса заряда Δq и донорно-акцепторные характеристики атомов Li и Na, а также соседних атомов Cl. Положительное/отрицательное Δq характеризует потерю/приобретение электронов. Нумерация атомов согласно рис. 3 и 4

MgCl₂, содержащем MBCl и MBMg несколько выше таковой для атома Li. Для объяснения полученных результатов проведен анализ зарядового распределения на атомах кристаллической решетки при помощи анализа Бадера [30] с использованием кода Хенкельмана [31]. Представленные в табл. 3 результаты данного анализа показывают, что Li и Na являются сильными донорами во всех рассмотренных случаях, в то время как ближайшие к атомам Li и Na атомы Cl меняют свою роль с акцепторной (в случае адсорбции атомов Li и Na на монослое MgCl₂, содержащем MB_{Cl}) на донорную (в случае адсорбции атомов Li и Na на монослое MgCl₂, содержащем MB_{Mg}). Наибольшее различие в E_a Li и Na наблюдается для монослоя MgCl₂, содержащего MB_{Mg}. При этом значительный вклад в адсорбцию Li и Na вносят близлежашие к ним атомы Cl. Согласно табл. 3, атомы Cl являются достаточно слабыми донорами $(\Delta q \cong 0.060e)$ в случае адсорбции атома Na, в то время как при адсорбции атома Li атомы Cl являются сильными донорами ($\Delta q \cong -0.112e$). При этом атом Li занимает вакантную позицию Mg и имеет 6 ближайших соседних атомов Cl, в то время как атом Na остается на поверхности монослоя MgCl₂ и имеет только 3 ближайших соседних атомов Cl. Таким образом, перенос заряда от атомов Li(Na) к поверхности монослоя MgCl₂ через ближайшие атомы Cl, а также роль этих атомов Cl в каждом конкретном случае имеют решающее значение при адсорбции атомов Li и Na на монослое $MgCl_2$.

Выводы. В заключение, в данной работе при помощи первопринципных расчетов были проведены исследования недавно обнаруженного монослоя MgCl₂ для его возможного применения в Li- и Naионных батареях. Во-первых, смоделированный фононный спектр монослоя MgCl₂ показал его структурную стабильность, что важно для его применения. Показано также, что монослой MgCl₂ может содержать MB дефекты из-за сравнительно низкой энергии образования в нем этих дефектов. Вовторых, показано, что энергия адсорбции E_a атома Li и атома Na на поверхности монослоя MgCl₂ сравнительно велики, -0.37 эВ и -0.38 эВ, соответственно, а наличие MB-дефектов на поверхности монослоя MgCl₂ приводит к значительному уменьшению энергии адсорбции E_a до -6.67 эВ (для Li) и до -5.68 эВ (для Na). Следовательно, монослой MgCl₂ может быть универсальным кандидатом для применения в качестве анодного материала, применяемых в Li- и Na-ионных батареях.

Для А. А. Кистанова исследование выполнено за счет гранта Российского научного фонда #23-73-01001, https://rscf.ru/project/23-73-01001/.

Исследования проводились на оборудовании коллективной исследовательской базы объединенного суперкомпьютерного центра Российской академии наук.

- A. A. Kistanov, S. A. Shcherbinin, R. Botella, A. Davletshin, and W. Cao, J. Phys. Chem. Lett. 13, 2165 (2022); https://doi.org/10.1021/acs.jpclett.2c00367.
- I. T. Lima, R. Vasconcelos, R. Gargano, and E. N. C. Paurad, New J. Chem. 44, 8833 (2020); https://doi.org/10.1039/D0NJ01264E.
- G. Bhattacharyya, I. Choudhuri, P. Bhauriyal, P. Garg, and B. Pathak, Nanoscale 10, 22280 (2018); https://doi.org/10.1039/C8NR07429A.

- F. Lu, W. Wang, X. Luo, X. Xie, Y. Cheng, H. Dong, H. Liu, and W.-H. Wang, Appl. Phys. Lett. **108**, 132104 (2016); https://doi.org/10.1063/1.4945366.
- W. Mrozik, M.A. Rajaeifar, O. Heidrich, and P. Christensen, Energy Environ. Sci. 14, 6099 (2021); https://doi.org/10.1039/D1EE00691F.
- A. A. Kistanov, D. R. Kripalani, Y. Cai, S. V. Dmitriev, K. Zhou, and Y.-W. Zhang, J. Mater. Chem. A 7, 2901 (2019); https://doi.org/10.1039/C8TA11503F.
- I. Kochetkov, T. T. Zuo, R. Ruess, B. Singh, L. Zhou, K. Kaup, J. Janek, and L. Nazar, Energy Environ. Sci. 15, 3933 (2022); https://doi.org/10.1039/D2EE00803C.
- K. Giagloglou, J. L. Payne, Ch. Crouch, R. K. B. Gover, P. A. Connor, and J. T. S. Irvinl, J. Electrochem. Soc. **165**, A3510 (2018); https://doi.org/10.4191/kcers.2019.56.3.05.
- 9. Y. Li, L. Shi, X. Gao, J. Wang, Y. Hu, X. Wu, and Z. Wen, Chem. Eng. J. **421**, 127853 (2021); https://doi.org/10.1016/j.cej.2020.127853.
- T. Li, Z.X. Chen, Y.L. Cao, X.P. Ai, and H.X. Yang, Electrochim. Acta 68, 202 (2012); https://doi.org/10.1016/j.electacta.2012.02.061.
- J. Zhou, L. Shen, M.D. Costa, K.A. Persson, S.P. Ong, P. Huck, Y. Lu, X. Ma, Y. Chen, H. Tang, and Y.P. Feng, Sci. Data 6, 86 (2019); https://doi.org/10.1038/s41597-019-0097-3.
- D. H. Fairbrother, J. G. Roberts, and G. A. Somorjai, Surf. Sci. **399**(1), 109 (1998); https://doi.org/10.1016/S0039-6028(97)00816-9.
- G. Kresse, and J. Furthmuller, Phys. Rev. B 54, 11169 (1996); https://doi.org/10.1103/PhysRevB.54.11169.
- J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. **77**, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865.
- A. Togo, L. Chaput, T. Tadano, and I. Tanaka, J. Phys. Condens. Matter **35**, 353001 (2023); https://dx.doi.org/10.1088/1361-648X/acd831.
- S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. **132**, 154104 (2010); https://doi.org/10.1063/1.3382344.
- V. L. Deringer, A. L. Tchougreeff, and R. Dronskowski, J. Phys. Chem. A **115**(21), 5461 (2011); https://doi.org/10.1021/jp202489.

- R. Nelson, C. Ertural, J. George, V.L. Deringer, G. Hautier, and R. Dronskowski, J. Comput Chem. 41(21), 1931 (2020); https://doi.org/10.1002/jcc.26353.
- G. Bhattacharyya, I. Choudhuri, P. Bhauriyal, P. Garg and B. Pathak, Nanoscale 10, 22280 (2018); https://doi.org/10.1039/c8nr07429a.
- J. Zhu and U. Schwingenschlogl, ACS Appl. Mater. Interfaces 6, 11675 (2014); https://doi.org/10.1021/am502469m.
- 21. H.R. Mahida, Α. Patel, D. Singh, Υ. R. Sonvane, P. B. Thakor, and Ahuja, **162**. Superlattices Microstruct. 107132 (2022);https://doi.org/10.1016/j.spmi.2021.107132
- H.-P. Komsa and A.V. Krasheninnikov, *Physics and theory of defects in 2D materials: the role of reduced dimensionality*, Amsterdam (2022), p. 7; https://doi.org/10.1016/B978-0-12-820292-0.00008-2.
- S. Abdolhosseinzadeh, Ch. Zhang, R. Schneider, M. Shakoorioskooie, F. Nüesch, and J. Heier, Adv. Mater. 34, 2103660 (2022); https://doi.org/10.1002/adma.202103660.
- A. A. Kistanov, V. R. Nikitenko, and O. V. Prezhdo, J. Phys. Chem. Lett. **12**, 620 (2021); https://doi.org/10.1021/acs.jpclett.0c03608.
- A. V. Krasheninnikov, P. O. Lehtinen, A. S. Foster, and R. M. Nieminen, Chem. Phys. Lett. 418, 132 (2006); https://doi.org/10.1016/j.cplett.2005.10.106.
- 26. X. Yu, H. Shao, X. Wang, Y. Zhu, D. Fang, and J. Hong, J. Mater. Chem. A 8, 3128 (2020); https://doi.org/10.1039/C9TA12600G.
- 27. Л. С. Чумакова, А. В. Бакулин, С. Е. Кулькова, ЖЭТФ **161**(6), 874 (2022); https://doi.org/10.31857/S0044451022060116.
- А.В. Бакулин, С.Е. Кулькова, ЖЭТФ 6(12), 1136 (2018); https://doi.org/10.1134/S004445101812009X.
- A. C. Харламенков, Пожаровзрывобезопасность/Fire and Explosion Safety. **31**(3), 96 (2022).
- R. F. W. Bader, Atoms in Molecules. A Quantum Theory, Clarendon Press, Oxford, UK (1990).
- W. Tang, E. Sanville, and G. Henkelman, J. Phys.: Condens. Matter. 21, 084204 (2009); https://doi.org/10.1088/0953-8984/21/8/084204.