Переход металл-диэлектрик и другие электронные свойства двухслойного АВ-графена на ферромагнитной подложке

И. Е. Гобелко⁺, А. В. Рожков^{*1)}, Д. Н. Дресвянкин[×]

⁺ Московский физико-технический институт (национальный исследовательский университет) (МФТИ), 141701 Долгопрудный, Россия

*Институт теоретической и прикладной электродинамики РАН, 125412 Москва, Россия

[×] Сколковский институт науки и технологий, 121205 Москва, Россия

Поступила в редакцию 20 сентября 2023 г. После переработки 5 октября 2023 г. Принята к публикации 6 октября 2023 г.

Используя простую теоретическую модель, мы исследуем двухслойный AB-графен на диэлектрической ферромагнитной подложке. Кроме обменного зеемановского поля, создаваемого подложкой, модель позволяет учитывать внешнее эффективное электрическое поле, направленное по нормали к плоскости графенового образца (такое поле возникает из-за контакта с подложкой, а также его создают, прикладывая напряжение на затворные электроды). Мы продемонстрируем, что при нулевом электрическом поле AB-графен находится в металлическом состоянии. При повышении поля происходит переход в диэлектрическую фазу. Мы вычисляем спектр электронных состояний, диэлектрическую щель и другие свойства фаз по обе стороны перехода металл-диэлектрик. Наши результаты согласуются с численными расчетами по методу функционала плотности. Наши расчеты могут быть востребованы в спинтронике.

DOI: 10.31857/S1234567823210103, EDN: szvcbn

1. Введение. Графен и материалы на его основе являются перспективными системами для использования в спинтронике [1–3]. Основной объект изучения в данной работе – двухслойный графен с берналловской упаковкой (также называемый АВ-графеном) [4–6], уложенный на ферромагнитную подложку. Привлекательность подобных гетероструктур связана с возможностью создавать значительное обменное зеемановское поле, влияя таким образом на спиновые свойства электронной жидкости графенового образца.

Экспериментальные и теоретические исследования в этом направлении активно ведутся в последние годы. Например, в экспериментальной статье [7] авторы сообщают, что диэлектрические магнитные подложки из EuS способны обеспечивать в образце однослойного графена сильное обменное поле в десятки, и даже сотни тесла. (Хотя магнитная индукция постоянных полей, создаваемых в лабораторных условиях, не превосходит несколько десятков тесла, с сильными обменными полями ситуация проще.) Авторам удалось наблюдать расщепление электронных зон графенового образца, переход электронной жидкости в ферромагнитное состо-

Безусловно, численные расчеты играют важную роль в исследованиях материалов. Однако многие свойства углеродных систем можно описывать в рамках простых одноэлектронных моделей, допускающих аналитические или полуаналитические решения. В данной работе именно такой подход мы применим к исследованию двухслойного АВ-графена на ферромагнитной диэлектрической подложке, помещенного во внешнее электрическое поле. Наш модельный гамильтониан обобщает гамильтониан, ранее предложенный в работе [10]. Аналитически находя одноэлектронные спектры АВ-графена, мы изучим магнитные и транспортные свойства образца. В частности, мы теоретически покажем, что при различных соотношениях между обменным зеемановским и нормальным электрическим полем двухслойный графен может находится как в диэлектрическом состоянии, так и в металлическом. Следова-

яние с квантовым спин-поляризованным транспортом, а также спиновый эффект Холла. В теоретических работах [8, 9] рассматриваются похожие системы: двухслойный графен помещается на диэлектрические магнитные подложки из разных материалов. В каждом случае рассчитывается электронный спектр с помощью компьютерного моделирования на основе метода функционала плотности.

 $^{^{1)}\}mathrm{e\text{-}mail:}$ arozhkov@gmail.com

тельно, меняя напряжение на затворном электроде, можно контролировать спиновый и зарядовый транспорт в двухслойном графене. Такая возможность может быть востребованной для приложений в спинтронике.

Наша работа организована следующим образом. В части 2 мы формулируем модель и изучаем ее простейшие свойства. Переход металл-диэлектрик рассматривается в части 3, а в части 4 мы сравниваем результаты наших расчетов с численными данными. Мы обсуждаем полученные результаты и представляем выводы в части 5.

2. Модель. Двухслойный AB-графен представляет из себя два листа однослойного графена, разделенных расстоянием d = 0.36 нм. Слои смещены друг относительно друга на длину химической связи углерод-углерод $a_0 = 0.142$ нм, см. рис. 1. В такой решетке в каждой элементарной ячейке находятся четыре атома углерода, каждый из которых представляет одну из четырех подрешеток, по две от каждого из слоев (для нижнего слоя – это подрешетки A1 и B1, для верхнего слоя – A2 и B2).

Рис. 1. (Цветной онлайн) Решетка двухслойного ABграфена, вид сверху. Синим изображен нижний слой, красным – верхний. Четыре подрешетки обозначены A1, B1, A2, B2

Для описания электрона с квазиимпульсом **q** на такой решетке необходимо ввести четыре компоненты волновой функции $\Psi_{\mathbf{q}}^{A1}, \Psi_{\mathbf{q}}^{B1}, \Psi_{\mathbf{q}}^{A2}$ и $\Psi_{\mathbf{q}}^{B2}$. Их удобно организовать в биспинор $\Psi_{\mathbf{q}}$ следующим образом:

$$\Psi_{\mathbf{q}} = \left(\Psi_{\mathbf{q}}^{A1}, \Psi_{\mathbf{q}}^{B1}, \Psi_{\mathbf{q}}^{A2}, \Psi_{\mathbf{q}}^{B2}\right)^{T}.$$
 (1)

Тогда уравнение Шредингера можно записать так:

$$H_{\mathbf{q}}\Psi_{\mathbf{q}} = \varepsilon_{\mathbf{q}}\Psi_{\mathbf{q}},\tag{2}$$

где $\varepsilon_{\mathbf{q}}$ – собственная энергия, а матрица $H_{\mathbf{q}},$ задаваемая равенством

$$H_{\mathbf{q}} = \begin{pmatrix} 0 & -tf_{\mathbf{q}} & 0 & 0\\ -tf_{\mathbf{q}}^* & 0 & -t_0 & 0\\ 0 & -t_0 & 0 & -tf_{\mathbf{q}}\\ 0 & 0 & -tf_{\mathbf{q}}^* & 0 \end{pmatrix}, \qquad (3)$$

играет роль гамильтониана для состояний с квазиимпульсом **q**. В этом определении мы использовали следующие обозначения: t = 2.57 эВ – амплитуда перескока между атомами в одном слое, $t_0 = 0.36$ эВ – амплитуда перескока между слоями, функция $f_{\mathbf{q}}$ равна $f_{\mathbf{q}} = 1 + 2 \exp\left(\frac{3ia_0q_x}{2}\right) \cos\left(\frac{\sqrt{3}a_0q_y}{2}\right)$, где квазиимпульс **q** отсчитывается от центра зоны Бриллюэна. Значения $\varepsilon_{\mathbf{q}}$ даются хорошо известной формулой:

$$\varepsilon_{\mathbf{q}}^{(1,\dots,4)} = \pm \frac{t_0}{2} \pm \sqrt{t^2 |f_{\mathbf{q}}|^2 + \frac{t_0^2}{4}}.$$
 (4)

Вблизи точек Дирака $K_{\rm D} = \left(0, \frac{4\pi}{3\sqrt{3}a_0}\right)$ и $K'_{\rm D} = \left(0, -\frac{4\pi}{3\sqrt{3}a_0}\right)$ энергетические зоны (4) выглядят так, как показано на рис. 2. Без внешнего воздействия АВ-графен находится в полуметаллическом состоянии: две нижние зоны полностью заполнены электронами, две верхние полностью пусты, энергия Ферми равна нулю $\varepsilon_{\rm F} = 0$, а в точке Дирака происходит касание пустой и заполненной зоны.

Теперь учтем влияние магнитной подложки. Будем предполагать, что обменное зеемановское поле, индуцированное подложкой, действует на два слоя по-разному. А именно, уточним систему уравнений (2) следующим образом:

$$(H_{\mathbf{q}} + V_{\sigma}) \Psi_{\mathbf{q}} = \varepsilon_{\mathbf{q}} \Psi_{\mathbf{q}}, \tag{5}$$

где матрица V_{σ} имеет вид:

$$V_{\sigma} = \operatorname{diag}\left(\sigma h, \sigma h, \sigma \tilde{h}, \sigma \tilde{h}\right). \tag{6}$$

В этом выражении h и \tilde{h} – обменные зеемановские энергии в нижнем и верхнем слоях соответственно. Ниже будем всегда предполагать, что $0 \leq \tilde{h} \leq h$, т.е. обменное поле в слое, непосредственно контактирующем с подложкой, всегда сильнее, чем поле в слое, с подложкой не соприкасающемся. (Мы будем указывать величины обменных полей как в эВ, так

Письма в ЖЭТФ том 118 вып. 9-10 2023

Рис. 2. (Цветной онлайн) Дисперсия АВ-графена (срез $q_x = 0, q_y$ меняется в узком диапазоне вблизи точки Дирака K_D , точка Дирака соответствует $q_x = q_y = 0$). Горизонтальной линией обозначен уровень Ферми $\varepsilon_{\rm F} = 0$

и в тесла; переход между этими единицами задается магнетоном Бора $\mu_{\rm B} = 5.79 \cdot 10^{-5}$ эВ/Тл). Символ σ обозначает проекцию спина электрона на вектор намагниченности подложки (σ принимает значения ±1).

Для системы (5) восемь ее собственных энергий (по четыре на одну проекцию спина) можно записать единым равенством:

$$\varepsilon_{\mathbf{q}\sigma}^{(1,\dots,8)} = \frac{\sigma(h+\tilde{h})}{2} + \chi \left[\frac{(h-\tilde{h})^2}{4} + |f_{\mathbf{q}}|^2 t^2 + \frac{t_0^2}{2} + (7) \right] \\ + \kappa \sqrt{(h-\tilde{h})^2 |f_{\mathbf{q}}|^2 t^2 + |f_{\mathbf{q}}|^2 t^2 t_0^2 + \frac{t_0^4}{4}} \right]^{1/2}.$$

Здесь мы ввели, в дополнении к $\sigma = \pm 1$, еще два бинарных индекса: $\chi = \pm 1$ и $\kappa = \pm 1$. В физически оправданном пределе $h \ll t_0 \ll t$ энергия электронных состояний с $\chi = +1$ ($\chi = -1$) положительна (отрицательна), за возможным исключением малых окрестностей точек Дирака.

Условимся, что двум зонам, лежащим ближе всего к уровню Ферми, будут присвоены номера 4 и 5. Договоримся также, что собственным энергиям $\varepsilon_{\bf q}^{(4)}$ для зоны 4 ($\varepsilon_{\bf q}^{(5)}$ для зоны 5) соответствует выбор значений параметров $\sigma=+1,~\chi=-1,~\kappa=-1~(\sigma=-1,~\chi=+1,~\kappa=-1)$ в ур. (7). Ниже нам также понадобятся зоны 3 ($\sigma=-1,~\chi=-1,~\kappa=-1$) и 6 ($\sigma=+1,~\chi=+1,~\kappa=-1$).

Оставшиеся зоны 1, 2, 7 и 8 соответствуют $\kappa = +1$. Легко проверить, что $\min_{\mathbf{q}} |\varepsilon_{\mathrm{F}} - \varepsilon_{\mathbf{q}}^{(1,2,7,8)}| \sim t_0$. Из-за столь значительного расстояния до уровня Ферми такие зоны нами рассматриваться не будут.

Уравнение (7) позволяет установить, что

$$\varepsilon_{\mathbf{q}}^{(4)} = -\varepsilon_{\mathbf{q}}^{(5)}, \quad \varepsilon_{\mathbf{q}}^{(3)} = -\varepsilon_{\mathbf{q}}^{(6)}.$$
 (8)

Отсюда следует, что уровень Ферми АВ-графена равен нулю, $\varepsilon_{\rm F} = 0$. Легко проверить, что зоны 3 и 6 не доходят до $\varepsilon_{\rm F}$, в то время как зоны 4 и 5 перекрываются возле точек Дирака, см. рис. 3. Это перекрытие приводит к перетеканию носителей из одной зоны в другую, что сопровождается образованием электронного и дырочного листов поверхности Ферми. Иными словами, при ненулевом обменном поле *h* двухслойный АВ-графен переходит в металлическое состояние даже без легирования.

Поверхность Ферми, возникшую в результате перетекания носителей из зоны 4 в зону 5, следует искать, решая уравнение $\varepsilon_{\mathbf{q}}^{(4)} = \varepsilon_{\mathbf{q}}^{(5)} = 0$. Это условие задает в пространстве квазиимпульсов двухсвязную поверхность Ферми \mathbf{q}_{F} . В силу симметрии (8), электронный и дырочный листы поверхности Ферми совпадают друг с другом, т.е. наблюдается нестинг.

Пусть δ – площадь области, ограничиваемой $\mathbf{q}_{\rm F}$. Так как эта площадь мала, то каждая компонента связности хорошо аппроксимируется окружностью малого радиуса $q_{\rm F}$. Центр одной такой окружности совпадает с точкой Дирака $K_{\rm D}$, центр второй окружности – с точкой Дирака $K'_{\rm D}$. Малость импульса Ферми $q_{\rm F}$ позволяет воспользоваться следующим приближением $|f_{\mathbf{q}_{\rm F}}| \approx 3a_0q_{\rm F}/2$. Сначала рассмотрим ситуацию, когда $\tilde{h} = 0$. В этом пределе получаем:

$$q_{\rm F} \approx \frac{2h}{3a_0 t}.\tag{9}$$

Однако даже небольшие \tilde{h} делают эту формулу неверной. Действительно, несложно показать, что в режиме $h \gg \tilde{h} \gg \frac{h^3}{t_0^2}$ выражение для радиуса поверхности Ферми будет принимать вид:

$$q_{\rm F} \approx \frac{2}{3a_0 t} \sqrt{t_0 \sqrt{h\tilde{h}}}.$$
 (10)

Сравнивая эту формулу для $q_{\rm F}$ с ур. (9), мы обнаруживаем, что даже маленькое \tilde{h} сильно меняет радиус Ферми.

Образовавшаяся поверхность Ферми является полуметаллической в том смысле, что из четырех типов носителей (электроны с двумя спиновыми поляризациями и дырки с двумя спиновыми поляризациями) только два типа (электроны со спином $\sigma = -1$ и дырки со спином $\sigma = +1$) достигают уровня Ферми.

Перераспределение носителей между зонами приводит к спиновой поляризации графенового образца. Так как формирующие поверхность Ферми зоны 4 и 5 характеризуются противоположными значениями σ , следовательно, перетекание носителей из одной

Рис. 3. (Цветной онлайн) Дисперсия АВ-графена на магнитной подложке (срез $q_x = 0$, q_y меняется в узком диапазоне вблизи точки Дирака K_D , точка Дирака соответствует $q_x = q_y = 0$). Графики построены при h = 11.6 мэВ (200 Тл). Энергия Ферми соответствует $\varepsilon_F = 0$. Отмечен радиус Ферми q_F . Панель (а) представляет данные для $\tilde{h} = 0$. Непосредственно в точке Дирака сохраняется точка Ферми с касанием зон. Графики на панели (b) построены при $\tilde{h} = 0.2$ мэВ. Видно, что даже малое значение \tilde{h} резко увеличивает радиус Ферми q_F , а также глубину ферми-моря. Масштабы осей на панели (а) отличаются от масштабов на панели (b)

зоны в другую сопровождается переворотом спинов перетекших носителей. Количество перетекших носителей (на одну элементарную ячейку) равно $\delta/S_{\rm BZ}$, где $\delta = 2\pi q_{\rm F}^2$, а $S_{\rm BZ} = 8\pi^2/(3\sqrt{3}a_0^2)$ – площадь зоны Бриллюэна для графена. Поскольку каждый перетекший электрон вносит два кванта $\hbar/2$ в полный спин системы, то, рассматривая приближение $\tilde{h} = 0$, для удельной спиновой поляризации находим:

$$m = \frac{\hbar h^2}{\sqrt{3\pi t^2}}.$$
 (11)

В случае же, когда $h \gg \tilde{h} \gg \frac{h^3}{t_0^2}$, имеем:

$$m = \frac{\hbar t_0 \sqrt{h\tilde{h}}}{\sqrt{3}\pi t^2},\tag{12}$$

где была использована формула (10). Мы видим, что конечное \tilde{h} приводит к резкому усилению намагниченности.

Обобщим нашу модель далее, учтя неэквивалентность слоев, вызванную контактом с подложкой и воздействием внешнего электростатического поля. Будем считать, что подложка создает конечную разность потенциальных энергий ϕ_0 между слоями. Кроме этого, предположим, что затворные электроды могут создавать электрическое поле *E* вдоль нормали к плоскости образца. Чтобы учесть эти воздействия, модифицируем матрицу V_{σ} в выражении (5):

$$V_{\sigma} = \operatorname{diag}\left(\sigma h + \frac{\phi}{2}, \,\sigma h + \frac{\phi}{2}, \,\sigma \tilde{h} - \frac{\phi}{2}, \,\sigma \tilde{h} - \frac{\phi}{2}\right),\tag{13}$$

где

$$\phi = \phi_0 - eEd = -eE^*d. \tag{14}$$

В последнем равенстве мы ввели эффективное поле $E^* = E - \phi_0/(ed)$, учитывающее совокупное влияние подложки и электрического поля E на электроны системы. Предложенная модель обобщает работу [10].

При конечных h, \tilde{h} и ϕ зонная структура описывается следующей формулой:

$$\varepsilon_{\mathbf{q}}^{(1,\dots,8)} = \frac{\sigma(h+\tilde{h})}{2} +$$
(15)
+ $\chi \left[\frac{(\phi + \sigma(h-\tilde{h}))^2}{4} + |f_{\mathbf{q}}|^2 t^2 + \frac{t_0^2}{2} +$
+ $\kappa \sqrt{(\phi + \sigma(h-\tilde{h}))^2 |f_{\mathbf{q}}|^2 t^2} + |f_{\mathbf{q}}|^2 t^2 t_0^2 + \frac{t_0^4}{4} \right]^{1/2}.$

Это равенство, обобщающее ур. (7), будет использовано ниже для изучения влияния внешних полей на свойства системы.

3. Переход металл-диэлектрик. Хорошо известно, что нормальное электрическое поле переводит АВ-графен в диэлектрическое состояние. С другой стороны, мы видели, что в пределе $\phi = 0$ двухслойный АВ-графен на ферромагнитной подложке является металлом. В связи с этим возникает вопрос о нахождении минимального значения ϕ , при котором в спектре исследуемой системы открывается щель. Достаточно простой анализ показывает, что система является металлом, когда зоны 4 и 5

Письма в ЖЭТФ том 118 вып. 9-10 2023

$$\varepsilon_{\mathbf{q}}^{(4,5)} = \pm \frac{h + \tilde{h}}{2} \mp \left[\frac{(\phi \pm (h - \tilde{h}))^2}{4} + |f_{\mathbf{q}}|^2 t^2 + \frac{t_0^2}{2} - \sqrt{(\phi \pm (h - \tilde{h}))^2 |f_{\mathbf{q}}|^2 t^2 + |f_{\mathbf{q}}|^2 t^2 t_0^2 + \frac{t_0^4}{4}} \right]^{1/2}$$
(16)

перекрываются по энергии. В противном случае двухслойный графен – диэлектрик. Таким образом, переход металл-диэлектрик происходит при таком значении ϕ , при котором максимум зоны 4

$$\varepsilon_{\max}^{(4)} = \frac{h + \tilde{h}}{2} - \frac{t_0(h - \tilde{h} + \phi)}{2\sqrt{(h - \tilde{h} + \phi)^2 + t_0^2}}$$
(17)

лежит на одном уровне с минимумом зоны 5

$$\varepsilon_{\min}^{(5)} = -\frac{h+\tilde{h}}{2} + \frac{t_0|h-\tilde{h}-\phi|}{2\sqrt{(h-\tilde{h}-\phi)^2 + t_0^2}}.$$
 (18)

Приравняв $\varepsilon_{\max}^{(4)}$ и $\varepsilon_{\min}^{(5)}$, несложно продемонстрировать, что исследуемая система является диэлектриком (полупроводником), когда $\phi > \phi_c$, при этом в режиме $h, \phi \ll t_0$ критическое значение ϕ_c дается формулой

$$\phi_c \approx h + \tilde{h} + \frac{2h^3}{t_0^2} + \frac{2\tilde{h}^3}{t_0^2}.$$
 (19)

Анализируя ур. (19), можно заключить, что при характерных обменных полях величиной в сотни тесла кубические поправки к величине ϕ_c дают пренебрежимо малый вклад.

Из уравнений (17) и (18) выводим величину диэлектрической щели $\Delta = \varepsilon_{\min}^{(5)} - \varepsilon_{\max}^{(4)}$:

$$\Delta = -h - \tilde{h} + \frac{t_0(\phi - h + h)}{2\sqrt{(\phi - h + \tilde{h})^2 + t_0^2}} + \frac{t_0(\phi + h - \tilde{h})}{2\sqrt{(\phi + h - \tilde{h})^2 + t_0^2}},$$
(20)

см. рис. 4а. В пределе очень больших полей $\phi \gg t_0$ мы получаем из ур. (20), что $\Delta \approx t_0 - h - \tilde{h}$. Эту асимптотику хорошо видно на рис. 5, где представлены зависимости $\Delta = \Delta(\phi)$ для различных величин зеемановского поля h и $\tilde{h} = 0$. Стоит, однако, помнить, что создать на эксперименте столь значительные диэлектрические щели будет весьма затруднительно из-за возможного электрического пробоя гетероструктуры.

Отметим также, что спиновая поляризация диэлектрической фазы всегда нулевая, m = 0: из-за отсутствия поверхности Ферми перераспределение носителей между зонами с противоположными значениями σ не происходит, и количество электронов со

Рис. 4. (Цветной онлайн) Дисперсия АВ-графена на магнитной подложке во внешнем электрическом поле вблизи точки Дирака $K_{\rm D}$ (срез $q_x = 0, q_y$ меняется в узком диапазоне вблизи точки Дирака К_D, точка Дирака соответствует $q_x = q_y = 0$). Графики построены при $\tilde{h} = 0, h = 11.2$ мэВ (190 Тл), так что $\phi_c = 11.22$ мэВ. (a) – Диэлектрическая фаза, $\phi = 20$ мэВ. В спектре явно видна щель, отделяющая валентные зоны 3 и 4 от зоны проводимости 5. (b) – Металлическая фаза, $\phi = 2$ мэВ. Зона 4 (зона 5) показана красной (синей) линией. Зоны 3 и 6 выходят за рамки представленного окна. Уровень Ферми отмечен горизонтальной прямой. Точки пересечения зон с уровнем Ферми соответствуют поверхности Ферми. Импульсы Ферми отмечены как Q_{F4}, Q_{F5} и q_{F4} . Масштабы осей на панели (а) отличаются от масштабов на панели (b)

спином по полю h строго равно количеству электронов со спином против поля.

Теперь обсудим область $\phi < \phi_c$, в которой наша система является металлом. Типичный металлический спектр показан на рис. 4b. Ранее, в части 2, мы обсуждали характеристики металлического состояния для случая, когда в системе отсутствует эффективное поле E^* . В конечных h и ϕ симметрия (8) более не верна, поэтому мы уже не можем зафиксировать уровень Ферми $\varepsilon_{\rm F} = 0$. Необходимо рассматри-

Рис. 5. (Цветной онлайн) Щель $\Delta = \Delta(\phi)$ при различных значениях обменного поля h и $\tilde{h} = 0$. В металлической фазе ($\phi < \phi_c$) щель равна нулю. Из графиков видно, что критическое значение ϕ_c растет с ростом h, что согласуется с ур. (19)

вать многокомпонентную поверхность Ферми, определяемую стандартным условием: $\varepsilon_{\mathbf{q}}^{(4)} = \varepsilon_{\mathbf{q}}^{(5)} = \varepsilon_{\mathbf{F}}$. Для зоны 4 при положительном ϕ данные уравнения задают две концентрические окружности с центром в точке K_{D} . Обозначим радиусы этих окружностей q_{F4} и $Q_{\mathrm{F4}}, q_{\mathrm{F4}} < Q_{\mathrm{F4}}$. То же самое происходит и вокруг точки K'_{D} . Зона 5 дает еще по одной окружности на точку Дирака. Их радиус обозначим Q_{F5} . Заметим, что при $\phi = 0$, радиусы Q_{F5} и Q_{F4} совпадают друг с другом и с q_{F} , определенным ур. (9), а радиус q_{F4} обращается в нуль. Возникшая поверхность Ферми должна удовлетворять следующему условию:

$$Q_{\rm F4}^2 - q_{\rm F4}^2 = Q_{\rm F5}^2. \tag{21}$$

Иными словами, число состояний, занятых электронами в зоне 4, равно числу состояний, свободных от электронов в зоне 5. В пределе $\tilde{h} = 0$ и $\phi \ll h \ll t_0$ данную задачу можно решить аналитически:

$$\varepsilon_{\rm F} \approx -\frac{\phi}{2} + \frac{4h^2\phi}{3t_0^2}.$$
 (22)

Когда $\phi \to 0$, выведенная формула показывает, что $\varepsilon_{\rm F}$ обращается в нуль, как и должно быть в случае без эффективного поля, см. часть 2. Также заметим, что во втором слагаемом присутствует величина $h^2/t_0^2 \ll 1$. В типичной физической ситуации это отношение мало. Например, при h = 200 Тл второе слагаемое является на три значащих порядка меньшим, чем первое.

4. Сравнение с компьютерным моделированием. Чтобы продемонстрировать возможности на-

шего подхода, мы сравним напи аналитические расчеты с результатами, полученными численно [9] в рамках метода функционала плотности. Следуя работе [9], мы определили "расщепление" валентной зоны $\lambda^{\rm VB}$ и "расщепление" зоны проводимости $\lambda^{\rm CB}$ следующим образом:

$$\lambda^{\rm VB} = \left[\varepsilon_{\mathbf{q}}^{(4)} - \varepsilon_{\mathbf{q}}^{(3)} \right]_{\mathbf{q}=0} =$$

$$= h + \tilde{h} - \frac{|\phi + h - \tilde{h}|}{2} + \frac{|\phi - h + \tilde{h}|}{2}, \qquad (23)$$

$$\lambda^{\rm CB} = \left[\varepsilon_{\mathbf{q}}^{(6)} - \varepsilon_{\mathbf{q}}^{(5)} \right]_{\mathbf{q}=0} =$$

$$= h + \tilde{h} + \frac{|\phi + h - \tilde{h}|}{2} - \frac{|\phi - h + \tilde{h}|}{2}.$$
 (24)

Эти два параметра характеризуют "тонкую" структуру спектра и легко вычисляются в рамках нашей модели.

"Расщепления" $\lambda^{\rm VB}$ и $\lambda^{\rm CB}$ интересны нам тем, что рис. 4b статьи [9] показывает, как эти величины (а также и щель Δ) зависят от внешнего электрического поля $E_{\rm ext}$, создаваемого затворными электродами. Мы тоже можем построить $\lambda^{\rm VB}$, $\lambda^{\rm CB}$ и Δ в зависимости от $E_{\rm ext}$. Для этого необходимо учесть, что поле $E_{\rm ext}$, порожденное внешним источником (затворными электродами), ослабляется в межслоевом пространстве AB-графена из-за перераспределения электронной плотности между слоями. С этой целью мы ввели диэлектрическую проницаемость двухслойного AB-графена ϵ и записали связь между ϕ и $E_{\rm ext}$ следующим образом:

$$\phi = \phi_0 - eE_{\text{ext}}d/\epsilon, \qquad (25)$$

что соответствует подстановке $E = E_{\rm ext}/\epsilon$ в ур. (14). Данные на верхней панели рис. 4 в работе [11] указывают на то, что $\epsilon \sim 3.4$. Похожие теоретические оценки можно найти и в работе [12].

Чтобы установить оптимальные значения параметров нашей модели, мы проанализировали рис. 3 и 4 в [9]. На рисунке 3 обращает на себя внимание то обстоятельство, что глубоко в диэлектрической фазе электронные зоны, чьи волновые функции преимущественно локализованные на верхнем слое, практически вырождены. Такое явление возможно в пределе очень слабого обменного поля \tilde{h} в верхнем слое. Поэтому мы выберем $\tilde{h} = 0$. Это позволяет нам воспроизводить приближенное вырождение соответствующих зон в диэлектрической фазе, см. наш рис. 4а.

Мы также видим на рис. 4b в [9], что расщепления $\lambda^{\rm VB}$ и $\lambda^{\rm CB}$ в диэлектрической фазе выходят на "полку" примерно при 8 мэВ. Проанализировав ур. (24)

им касанием зон. разруш

и (23), несложно убедиться, что это соответствует h = 4 мэВ при $\tilde{h} = 0$. Выбор $\epsilon \phi_0/(ed) = -0.38$ мэВ обеспечивает правильное положение металлической фазы на оси E_{ext} . И наконец, $\epsilon = 4$ выбирается так, чтобы наклон графика функции $\Delta = \Delta(E_{\text{ext}})$ был таким же, как и на рис. 4b в [9].

Соответствующие графики представлены на рис. 6. Построенные нами кривые хорошо согласуются как по характерным масштабам, так и по качественному поведению с графиками на рис. 4b в [9]. Иными словами, подбор всего лишь четырех подгоночных величин с прозрачным физическим смыслом позволяет воспроизводить зависимости, полученные в результате "тяжелого" численного расчета.

Рис. 6. (Цветной онлайн) Зависимость величины $\Delta/10$ (зеленая линия), а также величин спинового расщепления зоны проводимости (синяя линия) и валентной зоны (красная линия), от приложенного внешнего электрического поля $E_{\rm ext}$. Графики построены для $\tilde{h} = 0$, h = 4 мэВ, $\epsilon \phi_0/(ed) = -0.38$ В/нм и $\epsilon = 4$. Заметим, что ненулевое ϕ_0 сдвигает металлическую фазу в область $E \sim \epsilon \phi_0/(ed)$. Представленные графики согласуются с рис. 4b в работе [9]

5. Обсуждение и заключение. Наверное, самая интересная особенность рассматриваемой гетероструктуры – это возможность управлять ее проводящими свойствами с помощью затворного напряжения. Возникновение запрещенной зоны при наложении на образец АВ-графена перпендикулярного электрического поля – это известный теоретический результат, описанный в работах [13, 14], подтвержденный на эксперименте [11, 15–17]. Он обобщен нами на случай магнитной подложки. Мы увидели, что магнетизм подложки неожиданным образом модифицирует зонную структуру АВ-графена. И действительно, вместо точек Ферми с параболиче-

Письма в ЖЭТФ том 118 вып. 9-10 2023

ским касанием зон, разрушающихся при возникновении произвольно малой асимметрии между слоями ϕ , конечное h индуцирует спин-поляризованный металл при малых ϕ и диэлектрик – при больших. Наша простая модель позволяет рассчитать точку перехода металл-диэлектрик, а также исследовать свойства фаз по обе стороны перехода.

Расчеты показывают, что образец AB-графена имеет конечную намагниченность m в проводящей фазе. При увеличении ϕ система входит в диэлектрическое состояние с нулевым m. Иными словами, появляется возможность управления магнитным свойством гетероструктуры с помощью немагнитного воздействия.

При нулевом ϕ исследуемая система демонстрирует нестинг – совпадение электронного и дырочного листов поверхности Ферми. Эта особенность зонного строения подразумевает, что при достаточно низких температурах электронная жидкость будет неустойчива по отношению к спонтанному несверхпроводящему упорядочению [18]. Поскольку отклонение от $\phi = 0$ разрушает нестинг, изменяя затворный потенциал, можно контролировать упорядочение.

Также проводящая фаза обладает полуметаллическими свойствами: спины состояний на электронном (дырочном) листе поверхности Ферми идеально поляризованы против поля h (по полю h). Эту особенность зонной структуры можно использовать в экспериментах по спиновому транспорту.

Щель в диэлектрической фазе может быть весьма значительной: согласно нашей оценке $\Delta \sim t_0 - h - \tilde{h}$, она способна достигать величин в несколько сотен мэВ. Однако большие значения щели могут потребовать больших значений приложенного электрического поля, что увеличивает риск электрического пробоя всей системы.

Также, в пределе большой щели, когда $h \ll \phi \lesssim \lesssim t_0$, выраженность именно магнитных явлений может теряться на фоне чисто электростатических. Представляется, что режим $\phi \sim h$ более интересен, так как он близок к переходу металл-диэлектрик. В такой ситуации нужно помнить о следующем. Для того, чтобы обсуждаемая физика стала легкодоступной для наблюдения и/или практического применения, требуются подложки, способные создавать значительные h, сравнимые или даже превосходящие энергию, соответствующую комнатной температуре $T_r = 300 \text{ K} = 26 \text{ мэВ}$. В противном случае использование криогенных технологий становится неизбежностью.

В заключении хотелось бы напомнить основные тезисы нашей работы. Мы аналитически исследовали двухслойный АВ-графена на диэлектрической ферромагнитной подложке. Гамильтониан рассматриваемой модели включает обменное зеемановское и электростатическое поле, а также учитывает асимметрию слоев, вызванную контактом с подложкой. В низком эффективном поле АВ-графен – металл, для которого мы нашли поверхность Ферми. Она полуметаллична, и может демонстрировать нестинг. Сам образец обладает конечной спиновой поляризацией. При превышении критического значения электрического поля в спектре графена открывается щель. В возникшем диэлектрическом состоянии полная спиновая поляризация обращается в нуль. Наши расчеты согласуются с результатами компьютерного моделирования по методу функционала плотности. Возможность управления щелью в сочетании с нетривиальными магнитными свойствами делает обсуждаемую гетероструктуру интересной для приложений в спинтронике.

Исследование выполнено за счет гранта Российского научного фонда # 22-22-00464, https://rscf.ru/project/22-22-00464/.

- W. Han, R. K. Kawakami, M. Gmitra, and J. Fabian, Nature Nanotechnology, 9, 794 (2014).
- S. Roche, J. Åkerman, B. Beschoten et al. (Collaboration), 2D Mater. 2, 030202 (2015).
- S.S. Gregersen, S.R. Power, and A.-P. Jauho, Phys. Rev. B 95, 121406(R) (2017).
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and

A.A. Firsova, Science **306**, 5696 (2004).

- I.S. Sokolov, D.V. Averyanov, O.E. Parfenov, I.A. Karateev, A.N. Taldenkov, A.M. Tokmachev, and V.G. Storchak, Mater. Horiz. 7, 1372 (2020).
- A. V. Rozhkov, A. O. Sboychakov, A. L. Rakhmanov, and F. Nori, Phys. Rep. 648, 1 (2016).
- P. Wei, S. Lee, F. Lemaitre, L. Pinel, D. Cutaia, W. Cha, F. Katmis, Y. Zhu, D. Heiman, J. Hone, J. S. Moodera, and C.-T. Chen, Nat. Mater. 15, 711 (2016).
- K. Zollner, M. Gmitra, T. Frank, and J. Fabian, Phys. Rev. B 94, 155441 (2016).
- K. Zollner, M. Gmitra, and J. Fabian, New J. Phys. 20, 073007 (2016).
- P. Michetti, P. Recher, and G. Iannaccone, Nano Lett. 10, 4463 (2010).
- A. B. Kuzmenko, I. Crassee, D. van der Marel, P. Blake, and K. S. Novoselov, Phys. Rev. B 80, 165406 (2009).
- H. Min, B. Sahu, S. K. Banerjee, and A. H. MacDonald, Phys. Rev. B 75, 155115 (2007).
- 13. E. McCann, Phys. Rev. B 74, 161403(R) (2006).
- E. McCann and V. I. Fal'ko, Phys. Rev. Lett. 96, 086805 (2006).
- E. A. Henriksen and J. P. Eisenstein, Phys. Rev. B 82, 041412(R) (2010).
- A.B. Kuzmenko, E. van Heumen, D. van der Marel, P. Lerch, P. Blake, K.S. Novoselov, and A.K. Geim, Phys. Rev. B 79, 115441 (2009).
- E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.M.B. Lopes dos Santos, J. Nilsson, F. Guinea, A.K. Geim, and A.H. Castro Neto, Phys. Rev. Lett. 99, 216802 (2007).
- Д. Н. Дресвянкин, А. В. Рожков, А. О. Сбойчаков, Письма в ЖЭТФ 114(12), 824 (2021).