Сенсор на нелинейной кинетической индуктивности¹⁾

Д. Ю. Водолазов²⁾

Институт физики микроструктур РАН, 603950 Н.-Новгород, Россия

Поступила в редакцию 6 октября 2023 г. После переработки 20 октября 2023 г. Принята к публикации 20 октября 2023 г.

Предложена концепция сенсора электромагнитного излучения (nonlinear kinetic inductance sensor – NKIS) на нелинейной кинетической индуктивности. Идея сенсора основана на расходимости кинетической индуктивности $L_k \sim dq/dI$ ($\hbar q$ – импульс сверхпроводящих электронов, I – сверхток) гибридного сверхпроводник/нормальный металл (SN) мостика при токе $I^* < I_{dep}$ – ток распаривания гибрида) и температуре T^* много меньшей критической температуры гибрида T_c . Это позволяет получить большое изменение разности фаз $\delta\phi$ вдоль SN мостика в режиме заданного тока при $I\simeq I^*$ даже в случае малого роста электронной температуры. Возникновение $\delta\phi$ сопровождается изменением тока и магнитного потока через связанное сверхпроводящее кольцо, что может быть измерено с помощью сверхпроводящего квантового интерференционного прибора (СКВИДа). В некотором смысле предложенный сенсор является сверхпроводниковым аналогом сенсора на краю резистивного перехода (transition edge sensor - TES), чья работа основана на наличии большой производной dR/dT (R – сопротивление) вблизи критической температуры сверхпроводника T_c . Так как при $I \simeq I^*$ SN мостик находится в бесщелевом режиме, у него отсутствует нижняя граница для частоты детектируемого электромагнитного излучения. Расчеты показывают, что такой сенсор может работать в однофотонном режиме и детектировать одиночные фотоны с частотой $\nu \gtrsim 10$ ГГц. В работе обсуждается, что нетривиальная зависимость I(q)SN мостика может быть также использована в детекторах непрерывного электромагнитного излучения, сенсорах тока и магнитного поля.

DOI: 10.31857/S1234567823220111, EDN: phbfua

1. Введение. Сверхпроводники в настоящее время широко используются как основной элемент детектора/сенсора электромагнитного излучения. Поглощенный фотон создает квазичастицы в сверхпроводнике или увеличивает их энергию и это изменяет его сверхпроводящие/транспортные свойства. Например, в детекторах на кинетической индуктивности (kinetic inductance detector – KID) [1] и сенсорах на краю резистивного перехода (transition edge sensor – TES) [2] возрастают кинетическая индуктивность и сопротивление, соответственно, работа миксера на туннельном переходе сверхпроводникизолятор-сверхпроводник основана на изменении его сильно нелинейной вольт-амперной характеристики (ВАХ) [3], тогда как в сверхпроводниковых нано- и микрополосковых однофотонных детекторах (SSPD) токонесущий сверхпроводник переключается в резистивное/нормальное состояние после появления в нем горячего пятна (области с нагретыми электронами) в месте поглощения фотона [4].

В случае TES его высокая чуствительность связана с узким резистивным переходом сверхпроводника R(T) вблизи критической температуры T_c и использовании сверхпроводящего квантового интерференционного прибора (СКВИДа) для измерения отклика детектора – и чем больше производная dR/dT, тем сильнее изменяется сопротивление и ток в сверхпроводнике в режиме заданного напряжения. Одним из преимуществ TES является то, что он работает в резистивном состоянии вблизи T_c и, следовательно, сверхпроводящая щель ϵ_q практически равна нулю, что означает отсутствие нижней границы, типичной для KID или SSPD, где энергия фотона $h\nu$ должна превысить $2\epsilon_q$. Кроме того, TES может работать в однофотонном режиме (в инфракрасном и более высокочастотном диапазонах) и разрешать энергию поглощенного фотона, что не может делать SSPD.

В нашей работе предлагается альтернативный сенсор со способностью разрешать энергию фотона, который, как и TES, основан на сильном изменении транспортных свойств при малом разогреве сверх-проводящего чувствительного элемента. По сравнению с TES, он работает в *сверхпроводящем* состоянии при $T \ll T_c$, но несмотря на это, сенсор имеет

 $^{^{1)}\}mathrm{Cm.}$ дополнительный материал к данной статье на сайте нашего журнала www.jetpletters.ac.ru

²⁾e-mail: vodolazov@ipmras.ru

Рис. 1. (Цветной онлайн) Схема NKIS. NKIS состоит из SN мостика, который является частью сверхпроводящего кольца. С уменьшением температуры на зависимости свертока от импульса $I_{SN}(q_{SN})$ SN мостика появляется "плато" при $T = T^*$ и $I_{SN} = I^*$, что означает расходимость кинетической индуктивности $L_k \sim dq_{SN}/dI_{SN}$. При $I_{SN} \simeq I^*$ импульс меняется на $\sim \delta q$ с увеличением температуры электронов от $T = T^*$ до $T^* + \delta T$. Это приводит к изменению тока в сверхпроводящем кольце и магнитному потоку через него. Последнее может быть измерено с помощью СКВИДа. Предполагается, что SN мостик и кольцо являются частью антенны и фотон с энергией $h\nu <$ меньше удвоенной щели в сверхпроводящих электродах может быть поглощен только в SN мостике, где $\epsilon_g = 0$ при $I_{SN} \gtrsim I^*$

нулевую щель. Предложенный сенсор на нелинейной кинетической индуктивности (nonlinear kinetic inductance sensor – NKIS) состоит из смещенного током гибридного сверхпроводник-нормальный металл (SN) мостика, связанного со сверхпроводящим кольцом (см. рис. 1). SN мостик имеет уникальную зависимость сверхтока I_{SN} (здесь и далее имеется в виду абсолютное значение тока) от импульса $\hbar q_{SN}$. При $T = T^* \ll T_c$ на зависимости $I_{SN}(q_{SN})$ сущестует "плато" при $I_{SN} = I^*$, где кинетическая индуктивность $L_k = l_{SN} \hbar (dq_{SN}/dI_{SN})/2|e|$ расходится (l_{SN} – длина SN мостика). При $T > T^*$ "плато" трансформируется в часть $I_{SN}(q_{SN})$ с конечным наклоном и конечной L_k . Следовательно, можно получить большое изменение q_{SN} и разности фаз $\delta\phi$ в режиме заданного тока через SN мостик при $I_{SN} \simeq I^*$ и температуре подложки $T = T^*$ даже в случае небольшого увеличения температуры электронов. Рост q_{SN} приводит к увеличению тока в сверхпроводящем кольце и магнитного потока через него. Изменение последней величины может быть измерено с помощью СКВИДа. Предполагается, что SN мостик и кольцо являются частью антенны, которая принимает фотон, и фотон может быть поглощен только в SN мостике, который находится в бесщелевом режиме при $I\gtrsim I^*$ и в остальной части сенсора $h\nu<2\epsilon_g$.

По сравнению с TES, где большая производная dR/dT ведет к большому изменению тока, в NKIS большая производная dq_{SN}/dI_{SN} обеспечивает большое изменение $I_{\rm ring}$. В то же время, в отличие от TES, предложенный сенсор работает в сверхпроводящем, бездиссипативном состоянии, и $dq_{SN}/dI_{SN} \to \infty$ при $I_{SN} = I^*$ и $T = T^*$, что потенциально может приводить к более высокой чувствительности, чем у TES. Так же, как и TES, предложенный сенсор не имеет нижней границы для частоты детектируемых фотонов, так как при токе $I_{SN} \gtrsim I^*$ сверхпроводящая щель равна нулю в SN мостике. Ниже будет показано, что NKIS может потенциально детектировать одиночные фотоны с частотой $\nu > 10-30$ ГГц при температуре подложки 15–150 мК.

2. Сенсор на нелинейной кинетической индуктивности. В данном разделе представлены результаты вычислений, которые демонстрируют возможность работы NKIS в однофотонном режиме. На рисунке 2а показана рассчитанная зависимость $I_{SN}(q_{SN})$ при различных температурах для SN мо-

Рис. 2. (Цветной онлайн) (а) – Зависимость сверхтока от импульса (показана часть с $dI_{SN}/dq_{SN} > 0$) в SN мостике с параметрами: $D_N/D_S = 20$, $d_S = 3\xi_c$, $d_N = 1.5\xi_c$, $I^* \simeq 0.502I_{dep,S}$, $T^* \simeq 0.041T_{c0}$ при различных температурах и (b) – плотность состояний поперек мостика при $I_{SN} = 0.5I_{dep,S}$ и $T = 0.045T_{c0}$. (c) – Зависимость магнитного потока через сверхпроводящее кольцо от полного тока $I = I_{SN} + I_{ring}$ при различных температурах. (d) – Зависимость вариации магнитного потока (см. рис. 2с) от энергии фотона при различных токах

стика со следующими параметрами: толщины S и N слоев $d_S = 3\xi_c, d_N = 1.5\xi_c \ (\xi_c = (\hbar D_S/k_B T_{c0})^{1/2}),$ отношение коэффициентов диффузии $D_N/D_S = 20$, $\hbar q = \hbar (\nabla \varphi + 2\pi A/\Phi_0)$ – импульс куперовских пар $(\varphi - \varphi$ аза сверхпроводящего параметра порядка, A векторный потенциал, Φ_0 – квант магнитного потока), T_{c0} – критическая температура и $I_{dep,S}$ – ток распаривания при T = 0 одиночного сверхпроводящего слоя. Для расчета полученных зависимостей было использовано одномерное уравнение Узаделя (уравнения и метод расчета представлены в дополнительных материалах). В модели учитывается зависимость сверхпроводящих свойств только по толщине SN мостика $d_S + d_N$ и предполагается отсутствие их зависимости по длине (предполагается, что $l_{SN} \gg w_{SN}$) и ширине ($w_{SN} < \Lambda, \Lambda$ – Пирловская глубина проникновения магнитного поля) мостика.

При температуре T^* на зависимости $I_{SN}(q_{SN})$ появляется "плато" при токе $I = I^*$. Оно возникает вследствие перехода от $I_{SN}(q_{SN})$, имеющей один максимум при больших Т к зависимости, имеющей два максимума при низкой температуре. Второй максимум при малых q_{SN} возникает из-за возросшего вклада N слоя в общий сверхток (индуцированная вследствие эффекта близости сверхпроводимость в N слое становится "сильнее"), что также ведет и к увеличению наклона $I_{SN}(q_{SN})$ при малых q_{SN} и меньшей величине L_k. Так как N слой имеет более высокое значение коэффициента диффузии, распаривающий эффект сверхскорости (в уравнении Узаделя он описывается членом с $\hbar D_{S,N} q_{SN}^2$) больше в N слое, чем в S (заметим, что $q_{SN} = \text{const}$ по толщине SN мостика). Это ведет к подавлению сверхпроводимости в N слое при более малых q_{SN} , чем в S слое, и необходимости увеличить импульс чтобы сохранить величину сверхтока, что и приводит к появлению "плато".

Рисунок 2b демонстрирует, что при $I_{SN} \sim I^*$ сверхпроводимость в SN мостике бесщелевая. Подробное обсуждение бесщелевого режима приводится в следующем разделе, здесь мы только отметим, что хотя щель равна нулю, однако в большой части S слоя плотность состояний много меньше, чем в нормальном состоянии при $E \leq k_B T_{c0}$. Для дальнейших расчетов мы используем эффективную "нормальную" толщину SN мостика $d_{\rm eff} = d_N + \xi_c$, где плотность состояний близка к значению в нормальном состоянии N(0).

Когда SN мостик является частью сверхпроводящего кольца, полный ток I состоит из I_{SN} и I_{ring} (см. рис. 1). В модели предполагается, что кольцо сделано из того же материала, что и S слой в SN мостике и дуга кольца имеет толщину d_S как S слой в мостике, но ширина дуги много больше ширины мостика: $w_{\rm ring} \gg w_{SN}$. Из-за малой толщины и ширины SN мостика и дуги кольца по сравнению с Λ можно пренебречь экранирующими эффектами и считать, что $q = \nabla \varphi \gg A$. Из условия $\oint \nabla \varphi dl = 0$ при интегрировании по кольцу и мостику (предполагаем, что внутри кольца нет флкускоида) найдем: $q_{\rm ring} = q_{SN} l_{SN}/l_{\rm ring}$. С этим соотношением и определением $\alpha = l_{SN} w_{\rm ring}/l_{\rm ring} w_{SN}$ можно написать выражение для полного тока:

$$I = I_{SN}(q_{SN}) + 1.55\alpha q_{SN} \xi_c I_{dep,S},$$
 (1)

где мы использовали линейную связь $I_{\rm ring} \sim q_{\rm ring} \xi_c$ (так как $q_{\rm ring} \xi_c \ll 1$) и слабую температурную зависимость тока распаривания одиночного S слоя при $T \ll T_{c0}$.

С известной зависимостью $I_{SN}(q_{SN})$ и выражением для магнитного потока через кольцо $\Phi = L_G I_{ring}$ $(L_G = \mu_0 R(\ln(8R/r) - 2) -$ геометрическая индуктивность кольца, R – его радиус, $r \sim w_{\rm ring}$ и μ_0 магнитная постоянная) была рассчитана зависимость $\Phi(I,T)$. Она показана на рис. 2с для различных температур и следующих параметров: $w_{SN} = 100 \, \text{нм}$, $l_{SN} = 1 \text{ MKM}, w_{\text{ring}} = 12 \text{ MKM}, l_{\text{ring}} = 2.4 \text{ MM}, D_S =$ $= 0.5 \text{ cm}^2/\text{c}, T_{c0} = 1 \text{ K} (\xi_c = 19.5 \text{ hm}, I_{\text{dep},S} =$ $30.6 \text{ мкA}, \alpha = 1/20$). Выбранные материальные параметры сверхпроводника типичны для гранулированного Al [5] и близки к параметрам других низкотемпературных сверхпроводников с большим удельным сопротивлением в нормальном состоянии типа TiN [6], PtSi [7] и Hf [8]. В качестве нормального металла для N слоя была выбрана медь.

Используя полученные результаты, нами была рассчитана способность NKIS детектировать одиночные фотоны (анализ также может быть сделан и для непрерывного потока фотонов, как это было сделано в [9]). На рисунке 2d показана зависимость изменения потока через кольцо $\delta\Phi$ от изменения электронной температуры в SN мостике после поглощения фотона с энергией $h\nu$. Можно связать δT с $h\nu$, используя закон сохранения энергии

$$\delta T = \frac{h\nu}{C_e V_{\text{eff}}},\tag{2}$$

где $C_e = 2\pi^2 k_B^2 N(0)T_0/3$ – электронная теплоемкость, T_0 – температура подложки, $V_{\text{eff}} = l_{SN} w_{SN} d_{\text{eff}}$ – объем SN мостика, в котором плотность электронных состояний близка к своему значению в нормальном состоянии. Мы пренебрегли нагревом фононов из-за их малой теплоемкости и использовали значение $N(0) = 13 \text{ уB/нм}^3$, соответствующее меди.

Важной характеристикой фотонного сенсора является отношение сигнал/шум S/N. Шум можно оценить как $\mathcal{N} = \delta \Phi_n \sqrt{\omega}$, где $\delta \Phi_n$ – чувствительность к потоку dc СКВИДа и $\sqrt{\omega}$ – его полоса частот [9]. С $\delta \Phi_n = 10^{-6}/\sqrt{\Gamma \mathfrak{q}}$ (которое в 10 раз меньше значения, полученного в работе [10]), и $\omega = 1$ МГц получим $\mathcal{N} = 10^{-3} \Phi_0$. Следовательно, с величиной сигнала $\mathcal{S} = 10^{-2} \Phi_0$ отношение сигнал/шум составит $S/\mathcal{N} = 10$.

На рисунке 2
d уровень $\mathcal{S}=10^{-2}\Phi_0$ обозначен пунктирной линией и наши результаты показывают, что сенсор способен детектировать одиночные фотоны с частотой
 $\nu\gtrsim 10\,\Gamma\Gamma$ ц при $T_0=15\,\mathrm{mK}$ и токе $I\sim I^*\sim 0.526I_{\mathrm{dep},S}\sim 15\,\mathrm{mKA}.$

NKIS также может быть использован для детектирования одиночных ТГц и субТГц фотонов. Из-за их значительно более высокой энергии нет необходимости использовать мК температуры и $T_{c0} = 1$ К. Заметим, что $V_{\text{eff}} \sim \xi_c \sim 1/\sqrt{T_{c0}}$ и $I_{\text{dep},S} \sim T_{c0}$ для сверхпроводника, чья толщина пропорциональна ξ_c . Следовательно наши результаты могут быть масшабированы – необходимо умножить $\delta\Phi/\Phi_0$ на рисунке 2d на $T_{c0}(\text{K})/1$ К и ν на $(T_{c0}(\text{K})/1\text{K})^{3/2}$. Например для сверхпроводника с $T_{c0} = 10$ K (NbN, NbTiN) поглощение фотона с $\nu = 300$ ГГц при $T_0 = 150$ мК приводит к изменению магнитного потока на $\sim 0.2\Phi_0$ тогда как 30 ГГц фотон изменяет магнитный поток на $\delta\Phi/\Phi_0 \sim 0.02$.

Рис. 3. (Цветной онлайн) (а) – Зависимость сверхтока от импульса и (b) – токозависящая щель в SN мостике при $T = 0.05T_{c0}$ и различных отношениях D_N/D_S . Красные кружки указывают на ток I_q и импульс g_q , при которых щель обращается в ноль. Можно увидеть, что с ростом D_N это происходит при меньших q_{SN} . (c) – Зависимость сверхтока от импульса и (d) – токозависящая щель в SN мостике при $D_N/D_S = 20$ и различных температурах. Толщины d_N и d_S такие же, как на рис. 2

После поглощения фотона электроны нагреваются на δT и затем охлаждаются за счет передачи энергии фононам на временном масштабе ~ τ_{ep} . В предложенной системе не происходит охлаждение электронов за счет диффузии из-за большой энергетической щели на концах SN мостика, где он граничит со сверхпроводником с большой щелью $\epsilon_g = 1.76k_BT_{c0}$. При низких температурах $\tau_{ep} \sim 1/T^3$ и, например, для Ag оно может достигать $10^{-1}-10^{-4}$ с в диапазоне температур 10–100 мК [9]. Можно ожидать примерно этих же времен и для Cu.

3. Контролируемая током щель. Обсудим теперь более подробно бесщелевой режим в SN мостике. В обычном сверхпроводнике в "грязном" пределе энергетическая щель конечна при $I = I_{dep}$, где она приблизительно равна $0.57k_BT_{c0} \sim \Delta_0/3$ [11] $(\Delta_0 \sim 1.76 k_B T_{c0}$ – щель при нулевом токе). Однако в SN мостике щель обращается в ноль при токе $I_q < I_{dep}$, который отмечен красными кружками на рис. 3. Бесщелевое состояние в SN мостике возможно из-за большой разности между коэффициентами диффузии в N и S слоях. Как было обсуждено ранее, распаривающий эффект импульса в "грязном" сверхпроводнике описывается членом $\sim \hbar Dq^2$ в уравнении Узаделя, и, когда $\hbar Dq^2/2 \sim \Delta_0$, щель обращается в ноль в сверхпроводнике [11]. Приблизительно такой же критерий справедлив и для SN бислоя, что видно из рис. За, где с увеличением D_N щель становится нулевой при меньшем значении импульса q_{SN} .

В обычном сверхпроводнике условие $\hbar Dq^2/2 \sim \Delta_0$ достигается на неустойчивой, в режиме заданного тока, части зависимости I(q), где dI/dq < 0 и сверхпроводящий параметр порядка быстро уменьшается с ростом q. В SN бислое бесщелевое состояние является устойчивым из-за наличия S слоя, имеющего значительно меньший коэффициент диффузии и меньшее распаривающее влияние q.

4. "Плато" при различных параметрах SN мостика. Как показано ниже, "плато" существует в широком диапазоне параметров SN мостика. С увеличением d_S (при тех же значениях d_N и D_N/D_S) температура T^* , ширина "плато" и отношение I^*/I_{dep} уменьшаются (см. рис. 4а). Также существует минимальная критическая толщина d_S (например, она приблизительно равна $2.3\xi_c$ при $d_N = 1.5\xi_c$ и $D_N/D_S = 50$), ниже которой "плато" не существует при любой температуре. Рисунок 4b показывает, что необходимо иметь большое отношение $D_N/D_S \gtrsim 20$ для реализации режима с "плато" (в приницпе оно существует и при $D_N/D_S = 15$, но в этом случае $I^* \simeq I_{dep}$, что делает непрактичным его использование). Другим способом контро-

Рис. 4. (Цветной онлайн) (а) – Зависимость сверхтока от импульса при различных d_S , фиксированных $d_N = 1.5\xi_c$, $D_N/D_S = 50$ и температуре T, близкой к T^* . (b) – Зависимость $I_{SN}(q_{SN})$ при различных D_N/D_S , фиксированных $d_N = 1.5\xi_c$, $d_S = 3\xi_c$ и температуре T, близкой к T^* . (c) – Зависимость $I_{SS'}(q_{SS'})$ для SS' мостика при различных температурах и $D_{S'}/D_S = 50$, $d_N = 2\xi_c$, $d_S = 4\xi_c$, $T_{c,S'} = 0.15T_{c0}$. (d) – Зависимость кинетической индуктивности SS' мостика от тока при различных температурах, близких к T^* ($L_{k,S}$ – кинетическая индуктивность одиночного S слоя при T = 0)

лировать T^* является изменение толщины N слоя и прозрачности SN интерфейса для прохождения через него электронов. Например, увеличение d_N или уменьшение прозрачности сдвигает T^* в низкие температуры, так как в этом случае наведенная в N слое сверхпроводимость становится "слабее" и необходимо уменьшить температуру, чтобы ее усилить.

"Плато" на I(q) может также существовать в бислое, состоящим из двух сверхпроводников, имеющих разные критические температуры – см. рис. 4с. В этой системе также реализуется бесщелевой режим при $I < I_{dep}$ и зависимость $I_{SS'}(q_{SS'})$ чувствительна к малым изменениям температуры. Высокая чувствительность к температуре хорошо видна на рис. 4d, где показана зависимость $L_k(I_{SS'})$ при разных T вблизи T^* . С уменьшением температуры пик появляется на зависимости $L_k(I_{SS'})$, который становится резким при $T = T^*$ и $I_{SS'} = I^*$.

5. Обсуждение. Пик на зависимости $L_k(I)$ был недавно обнаружен для сверхпроводящей полоски MoN(40 нм)/Cu(40 нм) ($d_S = d_N \simeq 6\xi_c, T_{c0} \simeq$ $\simeq 7.8 \text{ K}$) [12]. С уменьшением температуры ширина пика уменьшалась, тогда как его высота увеличивалась, что согласуется с предсказанием, следующим из модели Узаделя. В этом эксперименте критический ток был меньше, чем ток распаривания (наиболее вероятно из-за влияния краевых дефектов) так как не была обнаружена расходимость L_k при $I = I_c$. Толщина SN бислоя была оптимизирована для наблюдения сверхпроводимости с конечным импульсом в достаточно малых магнитных полях и узкий пик должен был появиться при $T \simeq 0.025T_{c0} \simeq 200$ мK, как следует из модели Узаделя, что значительно меньше, чем минимальная достигнутая в эксперименте температура T = 2.7 K.

Различные схемы детектирования одиночных микроволновых фотонов, основанные на разогреве сверхпроводника малого размера, были предложены ранее. Дизайн, схожий с изображенным на рис. 1, но с SNS джозефсоновским контактом (ДК) вместо SN мостика обсуждался в работе [9]. Авторы предложили использовать сильную температурную зависимость критического тока длинного ДК и, по их оценкам, такой прибор способен детектировать ТГц фотоны. В сверхпроводящем замкнутом контуре с двумя SNS контактами нагрев одного ДК фотоном приводит к импульсу напряжения (когда магнитный поток через контур близок к $\Phi_0/2$), и это является идеей другой реализации однофотонного терагерцового детектора [13]. В работе [14] была предложена более сложная схема с двумя связанными сверхпроводниковыми контурами (один с магнитным потоком $\sim \Phi_0/2$, другой с $\Phi = 0$) и двумя (коротким и длинным) SNS контактами. Предполагается, что микроволновой фотон поглощается в длинном контакте и это приводит к заметному изменению квазичастичного тока через туннельный контакт, присоединенного к короткому ДК – для этого прибора была предсказана способность детектировать фотоны в частотном диапазоне 10 ГГц–10 ТГц. В работе [15] изменение импеданса SN мостика, помещенного в конце сверхпроводниковой копланарной линии служит сигналом, что микроволновой фотон был поглощен там (заметим, что эта реализация не требует приложения тока к мостику).

По сравнению с работами [9, 13, 14] наша система имеет более простой дизайн и не требует использования SNS контакта. Как и для системы из [15], возможно менять параметры SN мостика (ширину, длину, толщину N слоя) для согласования NKIS с 50 Ω микроволновым импедансом копланарной линии, при необходимости. Из-за похожести с TES возможно использовать опыт и методы, развитые для этого прибора. По сравнению с TES преимуществом NKIS является его работа в сверхпроводящем состоянии. Но более важным является то, что есть ток и температура, когда $dI_{SN}/dq_{SN} \to 0$ и $dq_{SN}/dI_{SN} \sim L_k \to \to \infty$ при $I = I^* < I_{dep}$. Данное свойство является следствием "фазового" перехода при понижении температуры от зависимости I(q), имеющей один максимум, к I(q), имеющей два максимума, и появления экстремума при малых q, возле которого dI/dq меняет знак.

В реальности пик на зависимости $L_k(I)$ будет уширен за счет тепловых/токовых флуктуаций, локальных вариаций толщины/ширины и материальных параметров (локальной T_c, удельного сопротивления и т.п.) SN мостика, которые также ответственны за уширение резистивного перехода в TES. Однако в отличие от резистивного перехода, где всегда dR/dT > 0 и зависимость R(T) является обратимой для зависимости I(q), при $T < T^*$ характерно наличие области с dq/dI < 0 возле I^* (см. рис. 1). Последнее приводит к гистерезису $L_k(I)$ при токах, близких к I^* . Если выбрать температуру немного ниже T^* , рост электронной температуры приводит к скачку L_k и $\delta\phi$, что достаточно просто заметить. Однако после охлаждения электронов SN мостик не вернется в начальное состояние, что является неудобным для детектирования следующего фотона. В этом случае флуктуации могут помочь вернутся в начальное состояние, при этом изменение $\delta\phi$ останется большим. В некотором смысле ситуация аналогична ВАХ сверхпроводящих мостиков. Обычно при $T \sim T_c$ ВАХ являются плавными и обратимыми, тогда как при $T \ll T_c$ они являются гистерезисными с резким скачком при $I = I_c$. При промежуточной температуре происходит переход от одной зависимости к другой, когда ВАХ остается еще обратимой, но с большой производной dV/dI при $I \simeq I_c$. Мы ожидаем похожего эффекта вблизи T^* , но для зависимости q(I)и dq/dI возле I^* .

Хотя в работе основной акцент сделан на способности NKIS детектировать одиночные микроволновые фотоны, предложенный сенсор может работать как и TES (болометр на горячих электронах) в режиме непрерывного потока фотонов. В этом случае для нахождения изменения температуры электронов δT необходимо решить уравнение на баланс разогрева SN мостика за счет поглощенного электромагнитного излучения и его остывания вследствие взаимодействия электронов с фононами. Заметим, что для этого рода приложения нет необходимости использовать СКВИД для считывания сигнала. Как и в KID, можно использовать копланарный волновод с емкостно связанным сверхпроводником, содержащим смещенный током SN мостик. При $I = I^*$ и температуре подложки $T = T^*$ кинетическая индуктивность SN мостика значительно меняется при увеличении электронной температуры (см. эволюцию $L_k(I)$ с температурой на рис. 4d). Благодаря бесщелевой сверхпроводимости добротность такого резонатора должна быть мала по сравнению с KID, что означает уширение резонанса, но это можно компенисировать экстремально большим (если сравнивать с KID) изменением L_k .

Расходимость L_k при $I \to I^*$ может быть также использована в сенсорах магнитного поля и тока. Действительно, даже малое отклонение тока от I^* ведет к большому изменению L_k при температуре близкой к T^* – см. рис. 4d. Это свойство может быть использовано в параметрическом повышающем преобразователе на кинетической индуктивности (kinetic inductance parametric up-converter) [16] для усиления малых токов в TES вместо СКВИДа и магнетометре на кинетической индуктивности [17] для измерения экранирующих токов, вызванных магнитным полем.

Работа поддержана НЦМУ "Центр фотоники" при финансировании Министерством науки и высшего образования РФ, соглашение 075-15-2022-316.

- J. Zmuidzinas, Annu. Rev. Condens. Matter Phys. 3, 169 (2012).
- K. Irwin and G. Hilton, *Transition-Edge Sensors*, in: *Cryogenic Particle Detection*. *Topics in Applied Physics*, ed. by C. Enss, Springer, Berlin, Heidelberg (2005), v. 99, p. 63.
- K. H. Gundlach and M. Schicke, Supercond. Sci. Technol. 13, R171 (2000).
- C. M. Natarajan, M. G. Tanner, and R. H. Hadfeld, Supercond. Sci. Technol. 25, 063001 (2012).
- F. Levy-Bertrand, T. Klein, T. Grenet, O. Dupre, A. Benoiot, A. Bideaud, O. Bourrion, M. Calvo, A. Catalano, A. Gomez, J. Goupy, L. Grunhaupt, U.v. Luepke, N. Maleeva, F. Valenti, I. M. Pop, and A. Monfardini, Phys. Rev. B 99, 094506 (2019).
- H.G. Leduc, B. Bumble, P.K. Day, B. Ho Eom, J. Gao, S. Golwala, B.A. Mazin, S. McHugh, A. Merrill, D.C. Moore, O. Noroozian, A.D. Turner, and J. Zmuidzinas, Appl. Phys. Lett. 97, 102509 (2010).
- P. Szypryt, B.A. Mazin, G. Ulbricht, B. Bumble, S.R. Meeker, C. Bockstiegel, and A.B. Walter, Appl. Phys. Lett. **109**, 151102 (2016).
- G. Coiffard, M. Daal, N. Zobrist, N. Swimmer, S. Steiger, B. Bumble and B. A. Mazin, Supercond. Sci. Technol. 33, 07LT02 (2020).
- F. Giazotto, T.T. Heikkila, G.P. Pepe, P. Helisto, A. Luukanen, and J.P. Pekola, Appl. Phys. Lett. 92, 162507 (2008).
- M. Kiviranta, J.S. Penttila, L. Gronberg, J. Hassel, A. Virtanen, and H. Seppa, Supercond. Sci. Technol. 17, S285 (2004).

- 11. K. Maki, Progr. Theoret. Phys. (Kyoto) **29**, 333 (1963).
- M. Yu. Levichev, I. Yu. Pashenkin, N. S. Gusev, and D. Yu. Vodolazov, Phys. Rev. B 108, 094517 (2023).
- P. Solinas, F. Giazotto, and G. P. Pepe, Phys. Rev. Appl. 10, 024015 (2018).
- 14. F. Paolucci, Phys. Rev. Appl. 20, 014003 (2023).
- V. Lubsanov, V. Gurtovoi, A. Semenov, E. Glushkov, V. Antonov, and O. Astafiev, Supercond. Sci. Technol. 35, 105013 (2022).
- 16. A. Kher, P.K. Day, B.H. Eom, J. Zmuidzinas and H.G. Leduc, J. Low Temp. Phys. **184**, 480 (2016).
- J. Luomahaara, V. Vesterinen, L. Groenberg, and J. Hassel, Nat. Commun. 5, 4872 (2014).