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In recent years, chromium-based superconductors
such as A2Cr3As3 (A= K, Rb, Cs) have attracted signif-
icant attention due to their unique properties and poten-
tial applications [1–3]. These materials are composed of
well-separated [(Cr3As3)

2−]∞ chains and exhibit strong
one-dimensional Tomonaga–Luttinger liquid behavior in
the normal state [4–7].

In the superconducting state, these materials dis-
play unconventional superconducting characteristics.
The unique properties of both normal and supercon-
ducting states in these materials have spurred consid-
erable research interest in the A2Cr3As3 system [8–12].
Pairing symmetry is a crucial aspect when investigating
superconducting systems. For A2Cr3As3 superconduc-
tors, some groups have theoretically predicted possible
s-wave pairing [9, 13]. However, the high upper critical
field that sharply increases to 44.7 T at 0 K, nearly four
times the Pauli limit [14], provides stronger theoretical
support for p-wave pairing symmetry, which exhibits po-
tential topological characteristics [15, 16].

Moreover, the energy bands of p-wave A2Cr3As3
superconductors bear similarities to three-dimensional
topological nodal line semi-metals, which feature one-
dimensional rings at the Fermi energy [17–21]. Theoret-
ical predictions and experimental findings point to fasci-
nating topological p-wave pairing and surface flat bands
with a high density of states, motivating further inves-
tigations of superconductivity in the A2Cr3As3 system.

In this paper, we explore the superconducting
mechanisms and potential topological properties of
chromium-based superconductors from a theoretical
standpoint. We have developed a three-orbital tight-
binding model in momentum space to qualitatively de-
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Fig. 1. (Color online) (a) – The normal state Fermi surface
at the kz = 0 plane. (b) – Phase diagram on the (kx,ky)
plane. w is winding number. Panels (c)–(f) are the normal
state energy bands as a function of kz at the points A, B,
C and D, respectively

scribe the superconducting performance of A2Cr3As3
superconductors.

As reported in [6, 11, 15], the normal Fermi surface
is a three-dimensional pocket symmetrical about kz = 0
plane. To study the system’s topological properties, we
must identify the critical points of different phases. For
the pz-wave pairing symmetry, the superconducting gap
equals zero at the kz = 0 plane. We plot the normal state
Fermi surface on the kz = 0 plane in Fig. 1a. It reveals
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that the system is gapless in the normal state. It should
also be the nodal line in the pz-superconducting state.

Therefore, we introduce a chiral-protected
momentum-dependent integral z-value topological
invariant: winding number (w) and apply it to the
A2Cr3As3 family of materials [22–24]. The phase
diagram is shown in Fig. 1b. Our results reveal that
A2Cr3As3 possesses non-trivial topology on the (kx, ky)
plane. The phase diagram can be well understood by
analyzing the normal state energy bands. Previously,
the one-dimensional p-wave superconductor, specifi-
cally the one-dimensional Kitaev chain model, has been
extensively studied [25]. The topological nature is de-
termined by the normal state Fermi energy. We present
the normal state energy bands for different points of
the phase diagram in Figs. 1c–f. Then, in the p-wave su-
perconducting state, all of these three bands contribute
to the nontrivial topological superconductiveity, result
in the w = 3 at this region. Two bands cross the Fermi
energy, so that at this region, the topological invariant
w reduces to 2. Non-zero topological invariants within
the Fermi surface typically result in the presence of
topologically protected zero-energy flat bands on the
system surface. Our numerical calculations show that
the entire Brillouin zone is covered by a completely flat
energy band.

In order to further verify the topological proper-
ties of the system, we consider open boundary condi-
tions along the x- and y-directions, and periodic bound-
ary conditions along the z-direction. We plot the en-
ergy band, spectral function and zero energy spectrum
function, which serve as valuable indicators of the sys-
tem’s topological properties. These numerical results
confirm that the Brillouin zone’s non-zero value results
in precisely flat surface bands. And edge states and zero
modes can be stabilized.

Notably, our work not only considers p-wave sym-
metry but also numerically verifies the absence of edge
states in the superconducting state for s-wave pairing
symmetry. Furthermore, we find that the system is topo-
logically trivial for s-wave pairwise symmetry in the su-
perconducting state.

This is an excerpt of the article “Nodal line topo-
logical superconducting state in quasi-one-dimensional
A2Cr3As3 (A= K, Rb, Cs) superconductors”. Full text
of the paper is published in JETP Letters journal.
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