Локальный квенч в технике Келдыша¹⁾

А. А. Радовская(D+2), А. Г. Семенов(D+*)

+Физический институт им. П. Н. Лебедева РАН, 119991 Москва, Россия

* Сколковский институт науки и технологий, 121205 Москва, Россия

Поступила в редакцию 10 октября 2023 г. После переработки 3 ноября 2023 г. Принята к публикации 14 ноября 2023 г.

В работе исследована задача о квантовой эволюции скалярного поля после мгновенного локального возмущения (квенча). В рамках техники Келдыша разработан подход к описанию квенча из произвольного начального состояния. Этот подход не использует процедуру аналитического продолжения, которая может быть неоднозначной в ряде случаев. Для простого примера вычислена эволюция плотности энергии после квенча, проанализирована зависимость от ширины области взаимодействия и начальных условий.

DOI: 10.31857/S1234567823240096, EDN: nmcnmx

1. Введение. Исследования физических явлений, возникающих при квантовой эволюции систем с большим числом степеней свободы, интересны как сами по себе так и в приложении к различным областям современной физики, таким как физика конденсированного состояния вещества, космология, столкновения тяжелых ионов и др. Например, в экспериментах с ультрахолодными атомами есть возможность изменять конфигурацию ловушки и/или длину рассеяния, что приводит систему в неравновесное состояние. Это, в свою очередь, позволяет напрямую наблюдать квантовую эволюцию многочастичной системы [1].

В общем виде начальное состояние квантовой системы задается матрицей плотности $\hat{\rho}(t_0) = \hat{\rho}_0$. В частности, в состоянии теплового равновесия $\hat{\rho}_0 \sim e^{-\hat{H}/T}$, где \hat{H} – это гамильтониан системы, а T - температура. После унитарной эволюции происходит измерение наблюдаемой, которой соответствует самосопряженный оператор \hat{O} . Среднее значение оператора в момент времени t определяется как след с матрицей плотности $\langle \hat{O} \rangle_t = \operatorname{tr}(\hat{O}\hat{\rho}(t))$.

Не всегда матрица плотности в начальный момент времени $\hat{\rho}_0$ известна в явном виде. Другим способом задать начальное состояние системы можно описав корреляции, присутствующие в начальный момент времени. Другими словами, определив всевозможные средние $\langle \hat{A}_1 ... \hat{A}_n \rangle_{t_0} = \operatorname{tr}(\hat{A}_1 ... \hat{A}_n \hat{\rho}_0)$ от полного набора операторов $\{\hat{A}_i\}$.

Кроме того, начальное состояние квантовой системы может быть создано путем контролируемого возмущения известного равновесного состояния. В этом случае такое начальное состояние определяется протоколом его приготовления. Пусть исследуемая система приведена в состоянии равновесия с окружением, после чего в ней скачком меняются какие-либо параметры, например, константа взаимодействия или масса. С точки зрения нового Гамильтониана исходное состояние является неравновесным, и система начинает эволюционировать к новому равновесию. Такой процесс скачкообразного изменения параметров всей системы называется глобальным квенчем (global quench) [2–9]. Если система возмущается в окрестности некоторой точки \mathbf{x}_{a} путем действия оператора $Q(\mathbf{x}_q)$, то такой процесс в литературе называется локальным квенчем (local quench) [10–13]. Интересно, что в ряде случаев он эквивалентен геометрическому квенчу, описывающему процесс слияния двух подсистем в теории поля [4, 14]. После возмущения матрица плотности системы имеет вид

$$\hat{\rho}(t_0+0) = \frac{\hat{Q}(\mathbf{x}_q)\hat{\rho}_0\hat{Q}^{\dagger}(\mathbf{x}_q)}{\operatorname{tr}(\hat{Q}^{\dagger}(\mathbf{x}_q)\hat{Q}(\mathbf{x}_q)\hat{\rho}_0)}$$

В частности, оператор вида $\hat{Q}(\mathbf{x}_q) = e^{i\hat{V}(\mathbf{x}_q)}$ с самосопряженным $\hat{V}(\mathbf{x}_q)$ может быть проинтерпретирован как результат влияния мгновенной добавки $\delta H(t) = -\delta(t-t_0)\hat{V}(\mathbf{x}_q)$ к исходному Гамильтониану.

В недавних работах [10, 12, 13] исследовался локальный квенч в свободной скалярной теории поля. В этих работах использовалась процедура аналити-

 $^{^{1)}\}mathrm{Cm.}$ дополнительный материал к данной статье на сайте нашего журнала www.jetpletters.ac.ru

²⁾e-mail: raan@lpi.ru

ческого продолжения из мнимого времени, которая не всегда является прозрачной и имеет ряд ограничений на исследуемые начальные состояния.

В настоящей работе описывается подход к решению задачи о локальном квенче в реальном времени с использованием техники Келдыша. Этот подход позволяет изучать более широкий класс начальных состояний. Кроме того, такой подход довольно просто обобщить на случай взаимодействующих теорий.

План статьи следующий: во втором разделе кратко описывается техника Келдыша и квазиклассической приближение в ее рамках. В третьем разделе дана постановка задачи о локальном квенче и получено ее общее решение в рамках описанного выше подхода, а также рассмотрен пример квадратичного квенча для различных начальных условий. В оставшихся двух разделах обсуждаются полученные результаты и возможности для дальнейших исследований.

2. Квазиклассическое приближение в технике Келдыша. Неравновесные квантово-полевые системы удобно изучать, используя технику Келдыша [1,15–17]. В этом подходе среднее от оператора вычисляется как след с матрицей плотности. Поскольку эволюция матрицы плотности со временем определяется двумя операторами эволюции, в теории происходит удвоение степеней свободы. Это можно представить как эволюцию полей вперед φ_F и назад по времени φ_B на контуре Келдыша [18].

Удобно перейти от базиса полей φ_F, φ_B к базису так называемых "классических" φ_{cl} и "квантовых" φ_q полей:

$$\varphi_{cl}(x) = \frac{1}{2} \left(\varphi_F(x) + \varphi_B(x) \right), \qquad (1)$$
$$\hbar \varphi_q(x) = \varphi_F(x) - \varphi_B(x).$$

Такой переход удобен при изучении квазиклассического разложения теории. Кроме того, вершины в новом базисе выглядят проще. Тогда среднее оператора в момент времени t выглядит как [20]:

$$\langle O[\hat{\varphi}(\mathbf{x})] \rangle_t = \int \mathfrak{D}\Pi(\mathbf{x}) \mathfrak{D}\Phi(\mathbf{x}) \ \mathcal{W}[\Phi(\mathbf{x}), \Pi(\mathbf{x})] \times$$
(2)

$$\times \int_{\text{i.c.}} \mathcal{D}\varphi_{cl}(t, \mathbf{x}) \int \mathcal{D}\varphi_q(t, \mathbf{x}) O[\varphi_{cl}(t, \mathbf{x})] e^{\frac{i}{\hbar}S_K[\varphi_{cl}, \varphi_q]}.$$

Действие на контуре Келдыша определяется как разница действий на верхней и нижней части контура $S_K[\varphi_F, \varphi_B] = S[\varphi_F] - S[\varphi_B]$. Интеграл с обозначением i.c. означает интегрирование по полям φ_{cl} с заданными начальными условиями $\varphi_{cl}(t_0, \mathbf{x}) = \Phi(\mathbf{x}),$ $\partial_t \varphi_{cl}(t_0, \mathbf{x}) = \Pi(\mathbf{x})$. Начальные условия для интегрирования по φ_q не заданы. Функционал Вигнера выражается через матрицу плотности системы в начальном состоянии, тем самым определяя все свойства в начальный момент времени t_0 :

$$W[\Phi(\mathbf{x}), \Pi(\mathbf{x})] = \int \mathfrak{D}\beta(\mathbf{x})e^{i\int d^{d-1}\mathbf{x}\beta(\mathbf{x})\Pi(\mathbf{x})} \times \langle \Phi(\mathbf{x}) + \frac{\hbar}{2}\beta(\mathbf{x})|\hat{\rho}(t_0)|\Phi(\mathbf{x}) - \frac{\hbar}{2}\beta(\mathbf{x})\rangle.$$
(3)

Для скалярной теории поля с действием

$$S = \frac{1}{2} \int d^d x \left(\partial_\mu \varphi(x) \partial^\mu \varphi(x) - m^2 \varphi^2(x) - \frac{g}{2} \varphi^4(x) \right)$$

действие Келдыша выглядит как

$$S_{K}[\varphi_{cl},\varphi_{q}] = -\hbar \int_{t_{0}}^{\infty} dt \int d^{d-1} \mathbf{x} \left(\varphi_{q} A[\varphi_{cl}] + \frac{g\hbar^{2}}{4} \varphi_{cl} \varphi_{q}^{3}\right)$$
$$A[\varphi_{cl}] = (\partial_{\mu} \partial^{\mu} + m^{2}) \varphi_{cl} + g \varphi_{cl}^{3}. \tag{4}$$

Здесь условие $A[\varphi_{cl}] = 0$ является уравнением движения для скалярного поля и выделяет поля на классической траектории. Легко видеть, что квазиклассическое приближение можно сделать, разложив последнее слагаемое $\frac{g\hbar^2}{4}\varphi_{cl}\varphi_q^3$ в формуле (4)

$$e^{-i\frac{g\hbar^2}{4}\int_{t_0}^{\infty} dt \int d^{d-1}\mathbf{x}\varphi_{cl}\varphi_q^3} =$$

$$= 1 - i\frac{g\hbar^2}{4}\int_{t_0}^{\infty} dt \int d^{d-1}\mathbf{x} \varphi_{cl}\varphi_q^3 + \cdots$$
(5)

Лидирующий вклад такого разложения известен как Классическое Статистическое Приближение или Квазиклассический метод. С учетом только первого вклада интегралы по полям φ_q и φ_c могут быть взяты и конечный ответ получится [19]:

$$\langle O[\hat{\varphi}(\mathbf{x})] \rangle_t =$$

= $\int \mathfrak{D}\Phi(\mathbf{x})\mathfrak{D}\Pi(\mathbf{x})W[\Phi(\mathbf{x}),\Pi(\mathbf{x})]O[\phi_c(t,\mathbf{x})],$ (6)

где ϕ_c – это решение классических уравнения движения

$$\left(\partial_{\mu}\partial^{\mu} + m^2\right)\phi_c + g\phi_c^3 = 0 \tag{7}$$

с начальными условиями

$$\phi_c(t_0, \mathbf{x}) = \Phi(\mathbf{x}), \quad \partial_t \phi_c(t_0, \mathbf{x}) = \Pi(\mathbf{x}).$$
(8)

Другими словами, для того чтобы найти среднее от оператора, нужно взять его значение на классической траектории и усреднить по всем начальным

Письма в ЖЭТФ том 118 вып. 11-12 2023

условиям с весом в виде функционала Вигнера. Для такого усреднения удобно ввести обозначение

$$\int \mathfrak{D}\Phi(\mathbf{x})\mathfrak{D}\Pi(\mathbf{x})W[\Phi(\mathbf{x}),\Pi(\mathbf{x})](\dots) \equiv \langle \dots \rangle_{\mathrm{i.c.}}, \quad (9)$$

тогда среднее (6) запишется как

$$\langle O[\hat{\varphi}(\mathbf{x})] \rangle_t = \langle O[\phi_c(t, \mathbf{x})] \rangle_{\text{i.c.}}.$$
 (10)

Легко увидеть, что квазиклассическое разложение в технике Келдыша построено по параметру $\hbar^2 g$, поэтому для невзаимодействущей системы классическое приближение дает точный ответ. Поскольку в данной работе исследуется квенч во невзаимодействующей системе, то именно формула (6), (10) будет использована в дальнейшем. Однако вышепреведенные выкладки показывают как можно естественным образом включить взаимодействие в исследование квенча.

3. Локальный квенч. Рассмотрим локальное возмущение системы в точке \mathbf{x}_q в момент времени t_q или, другими словами, локальный квенч с оператором

$$\hat{Q}(\mathbf{x}_q) = e^{-i\frac{\alpha}{\hbar}V(\hat{\varphi}_s(\mathbf{x}_q))}.$$
(11)

Здесь функция $V(\hat{\varphi}(\mathbf{x}_{q}))$ зависит только от значения поля в некоторой окрестности точки \mathbf{x}_q , таким образом, что поле $\hat{\varphi}_s(\mathbf{x}_q) = \int d^{d-1}\mathbf{x}\eta(\mathbf{x}-\mathbf{x}_q)\hat{\varphi}(\mathbf{x})$ не определенно в одной точке, а "размыто" ("smeared") в окрестности этой точки. Здесь а это размерный параметр, описывающий величину возмущения, а $\eta(\mathbf{x} - \mathbf{x}_a)$ – гладкая функция, не равная нулю лишь в малой окрестности точки \mathbf{x}_{q} . Поскольку произведения операторов поля в совпадающих точках не всегда хорошо определены, то будем предполагать, что функция "размытия" $\eta(\mathbf{x} - \mathbf{x}_q)$ всегда имеет конечную ширину. Таким образом, оператор $\hat{Q}(\mathbf{x}_q)$ возбуждает систему в некоторой малой окрестности точки **x**_q. Заметим, что такое возмущение можно реализовать, добавив к исходному гамильтониану дельтообразное по времени возмущение $\delta H(t) =$ $= \alpha \delta(t - t_q) V(\hat{\varphi}_s(\mathbf{x}_q)).$ Отсюда видно, что, например, возмущение с $\alpha V(\hat{\varphi}_s(\mathbf{x}_q)) = g\hat{\varphi}_s^4(\mathbf{x}_q)$ соответствует мгновенному появлению взаимодействия в системе в точке \mathbf{x}_{q} .

За эволюцию системы после такого возмущения отвечает матрица плотности

$$\hat{\rho}(t_0) \to \hat{\rho}_Q(t_q, \mathbf{x}_q) = \hat{Q}(\mathbf{x}_q)\hat{\rho}(t_q)\hat{Q}^{\dagger}(\mathbf{x}_q).$$
(12)

Ниже будем считать, что квенч произошел в начальный момент времени $t_q = t_0 = 0$. Тогда, согласно

Письма в ЖЭТФ том 118 вып. 11-12 2023

формуле (3), функционал Вигнера после локального квенча будет выглядеть как

$$W_{Q}[\Phi(\mathbf{x}),\Pi(\mathbf{x})] = \int \mathfrak{D}\beta(\mathbf{x})e^{i\int d^{d-1}\mathbf{x}\beta(\mathbf{x})\Pi(\mathbf{x})} \times (13)$$
$$\times \langle \Phi(\mathbf{x}) + \frac{\hbar}{2}\beta(\mathbf{x})|\hat{Q}(\mathbf{x}_{q})\hat{\rho}(t_{0})\hat{Q}^{\dagger}(\mathbf{x}_{q})|\Phi(\mathbf{x}) - \frac{\hbar}{2}\beta(\mathbf{x})\rangle.$$
(14)

Заметим, что

$$-i\frac{\delta}{\delta\Pi(\mathbf{y})}e^{i\int d^{d-1}\mathbf{x}\beta(\mathbf{x})\Pi(\mathbf{x})} = \beta(\mathbf{y})e^{i\int d^{d-1}\mathbf{x}\beta(\mathbf{x})\Pi(\mathbf{x})}.$$
(15)

Тогда функционал Вигнера после квенча может быть переписан как

$$W_Q[\Phi(\mathbf{x}), \Pi(\mathbf{x})] = Q\left(\Phi_s, \frac{\delta}{\delta\Pi_s}\right) W[\Phi(\mathbf{x}), \Pi(\mathbf{x})], \quad (16)$$

где мы ввели обозначения

$$Q\left(\Phi_s, \frac{\delta}{\delta\Pi_s}\right) = e^{-i\frac{\alpha}{\hbar}\left(V\left(\Phi_s - i\frac{\hbar}{2}\frac{\delta}{\delta\Pi_s}\right) - V\left(\Phi_s + i\frac{\hbar}{2}\frac{\delta}{\delta\Pi_s}\right)\right)},\tag{17}$$

$$\Phi_s = \int d^{d-1} \mathbf{x} \eta(\mathbf{x} - \mathbf{x}_q) \Phi(\mathbf{x}), \qquad (18)$$

$$\frac{\delta}{\delta \Pi_s} = \int d^{d-1} \mathbf{x} \eta (\mathbf{x} - \mathbf{x}_q) \frac{\delta}{\delta \Pi(\mathbf{x})}.$$
 (19)

В этих выражениях зависимость от точки квенча \mathbf{x}_q входит неявно через функцию "размытия" $\eta(\mathbf{x} - \mathbf{x}_q)$.

Тогда, после функционального интегрирования по частям, среднее от оператора запишется как

$$\langle \hat{O} \rangle_t^Q = \int \mathfrak{D}\Phi(\mathbf{x}) \mathfrak{D}\Pi(\mathbf{x}) W[\Phi(\mathbf{x}), \Pi(\mathbf{x})] \times \\ \times Q\Big(\Phi_s, -\frac{\delta}{\delta \Pi_s}\Big) O[\phi_c(t, \Phi(\mathbf{x}), \Pi(\mathbf{x}))].$$
(20)

Видно, что, для того чтобы найти среднее от оператора после квенча, нужно провести суммирование по начальным условиям с прежним функционалом Вигнера, но от модифицированной наблюдаемой. Поскольку чаще всего рассматриваются полиномиальные наблюдаемые, такие как плотность энергии или корреляционные функции полей, то, в отсутствии взаимодействия, лишь конечное число вариационных производных $\frac{\delta}{\delta \Pi_s}$ для них будет ненулевым. Это означает, что данный метод дает точный ответ даже для неквадратичных возмущений $V(\hat{\varphi}_s)$.

Формула (20) выражает главный результат этой статьи. Далее мы проиллюстрируем ее применение.

3.1. Квенч $V(\hat{\varphi}) = \hat{\varphi}^2$. Для простоты проведем вычисления в 1+1D теории поля. Рассмотрим локальное возмущение вида

$$\hat{Q}(x_q) = e^{-i\frac{\alpha}{\hbar}\hat{\varphi}_s^2(x_q)}.$$
(21)

Если считать, что в малой области Δx вблизи точки x_q на короткое время Δt масса поля поменялась с m на M, то $\alpha \approx \frac{M^2 - m^2}{2} \Delta t \Delta x$.

Согласно формуле (17):

$$Q\left(\Phi_s, -\frac{\delta}{\delta\Pi_s}\right) = e^{2\alpha\Phi_s \cdot \frac{\delta}{\delta\Pi_s}}.$$
 (22)

В качестве наблюдаемой выберем плотность энергии системы

$$\varepsilon(t,x) = \frac{1}{2}(\partial_t \varphi)^2 + \frac{1}{2}(\partial_x \varphi)^2 + \frac{1}{2}m^2 \varphi^2.$$
(23)

Последний ингредиент, который необходим для того чтобы воспользоваться формулой (20) и посчитать среднюю плотность энергии после действия локального квенча, это решение классического уравнения движения (7). Нетрудно показать, что без взаимодействия оно равно:

$$\phi_c(t,x) = (24)$$
$$= -\int dy \Big(\partial_t G_R(t,x-y)\Phi(y) + G_R(t,x-y)\Pi(y)\Big),$$

где запаздывающая функция Грина определяется из запаздывающего решения уравнения

$$(\partial_t^2 - \partial_x^2 + m^2)G_R(t, x - x') = -\delta(t)\delta(x - x'), \quad (25)$$

и равна

$$G_R(t, x - x') = -\theta(t) \int \frac{dp}{2\pi} \frac{\sin(\omega_p t)}{\omega_p} e^{-ip(x - x')},$$

$$\omega_p = \sqrt{p^2 + m^2}.$$
 (26)

Теперь можно посчитать среднюю плотность энергии после квенча. Для краткости выпишем выражение для $\phi_c^2(t, x)$. Слагаемые с производными вычисляются аналогично. Поскольку классическое решение является линейной функцией начальных условий, то экспоненту в выражении (22) достаточно разложить до второго порядка. Все высшие вариационные производные обращаются в ноль. Таким образом, с учетом формул (22), (24), получим:

$$Q\left(\Phi_s, -\frac{\delta}{\delta\Pi_s}\right)\phi_c^2(t, x) = \phi_c^2(t, x) - 4\alpha\phi_c(t, x)\Phi_s \cdot G_R^s(t, x) + 4\alpha^2\Phi_s^2 \cdot \left(G_R^s(t, x)\right)^2.$$
(27)

Здесь мы ввели обозначение для "размытой" запаздывающей функции Грина

$$G_{R}^{s}(t,x) = \int dy \ \eta(y - x_{q})G_{R}(t,x-y).$$
(28)

Далее необходимо провести усреднение по начальным условиям с функционалом Вигнера. Функционал нормирован на единицу, запаздывающая функция Грина не зависит от начальных условий, а среднее от классических решений равно Келдышевской функции Грина [20]:

$$iG_K(t - t', x - x') =$$

$$= \int \mathfrak{D}\Phi(x)\mathfrak{D}\Pi(x)W[\Phi(x), \Pi(x)]\phi_c(t, x)\phi_c(t', x'),$$
(29)

которая стандартным образом определяется через след с начальной матрицей плотности

$$iG_K(t-t', x-x') = \frac{1}{2} tr(\hat{\rho}(t_0)\{\hat{\varphi}(t, x), \hat{\varphi}(t', x')\}).$$

С учетом обозначения интегрирования по начальным условиям (9), введем "размытую" Келдышевскую функцию Грина $G_K^s(t,x)$ и постоянную $\langle \Phi_s^2 \rangle_{i.c}$:

$$\langle \phi_c(t,x)\Phi_s \rangle_{i.c} = iG_K^s(t,x) \equiv$$
$$\equiv \int dy \ \eta(y-x_q)iG_K(t,x-y),$$
$$\langle \Phi_s^2 \rangle_{i.c} \equiv \int dydz \ \eta(y-x_q)\eta(z-x_q)iG_K(0,y-z).$$
(30)

Тогда для плотности энергии после квенча (21) получим

$$\langle \hat{\varepsilon} \rangle_t^Q = \langle \hat{\varepsilon} \rangle_t - 2i\alpha \Big(m^2 G_K^s(t, x) G_R^s(t, x) + \\ + \partial_t G_K^s(t, x) \partial_t G_R^s(t, x) + \partial_x G_K^s(t, x) \partial_x G_R^s(t, x) \Big) + \\ + 2\alpha^2 \langle \Phi_s^2 \rangle_{i.c} \Big(m^2 \big(G_R^s(t, x) \big)^2 + \big(\partial_t G_R^s(t, x) \big)^2 + \\ + \big(\partial_x G_R^s(t, x) \big)^2 \Big).$$
(31)

Плотность энергии (31) является действительной величиной. Мнимая единица входит в определение Келдышевской функции Грина (32). Келдышевская функция Грина в совпадающих точках и временах сингулярна. Однако $\langle \Phi_s^2 \rangle_{i.c}$ регуляризована при помощи функций "размытия" $\eta(x-x_q)$. Для устранения подобных расходимостей эта функция и была введена в определении квенча (11). Ее физический смысл в том, что энергия выделяется не точно в точке x_q , а в некоторой окрестности, задаваемой функцией "размытия". Таким образом, конечный ответ будет зависеть от этой функции и расходиться при ее стремлении к дельта-функции.

Явный вид Келдышевской функции Грина зависит от начальных условий задачи, и в случае, когда

Письма в ЖЭТФ том 118 вып. 11-12 2023

они характеризуются одночастичной функцией распределения f_p , для свободной теории равен:

$$iG_K(t, x - x') = \hbar \int \frac{dp}{2\pi} \frac{\cos(\omega_p t)}{2\omega_p} (2f_p + 1)e^{-ip(x - x')}.$$
(32)

Используя явный вид функций Грина легко посчитать полную энергию, которую система получила в результате действия квенча:

$$\delta E = \int dx \left(\langle \hat{\varepsilon} \rangle_t^Q - \langle \hat{\varepsilon} \rangle_t \right) = 2\alpha^2 \langle \Phi_s^2 \rangle_{i.c} \int dy \eta^2(y).$$
(33)

Заметим, что выражение (31) содержит три вклада. Первый вклад представляет собой плотность энергии системы до квенча. Этот вклад может расходиться, как это бывает с вакуумной энергией в квантовой теории поля. Эта расходимость не имеет отношения к рассматриваемой нами проблеме и может быть устранена стандартными методами [21]. Второй вклад (пропорциональный α) отвечает линейному отклику системы на локальное возмущение. Как следует из формулы Кубо, данное слагаемое описывает перераспределение энергии между различными частями системы и не дает вклада в энергию, поглощаемую системой (33). Вся энергия, поглощенная системой в результате квенча, описывается третьим слагаемым выражения (21).

Полная энергия (33) существенно зависит от функции размытия $\eta(x - x_q)$. В случае локального квенча эта функция отлична от нуля только в малой окрестности точки x_q размера ϵ и стремится к $\delta(x-x_q)$ при $\epsilon \to 0$. Функция размытия входит в выражение для $\langle \Phi_s^2 \rangle_{i.c}$. Келдышевская функция Грина в совпадающих точках расходится стандартным для квантовой теории поля образом и требует регуляризации. Поэтому при $\epsilon = 0$ средний квадрат поля $\langle \Phi_s^2 \rangle_{i,c}$ зависит от ультрафиолетового масштаба Л. В 1+1 мерной скалярной теории поля эта зависимость логарифмическая $\langle \Phi_s^2 \rangle_{\rm i.c} \sim \log \frac{\Lambda}{m}$. Если ϵ конечно, то $\langle \Phi_s^2 \rangle_{i,c}$ сходится и в случае $\epsilon \Lambda \gg 1$ ультрафиолетовое поведение теории становится несущественным. Кроме того, полная поглощенная системой энергия (33) содержит в явном виде интеграл от $\eta^2(x)$. Простые размерные оценки (или явное вычисление с гауссовой функцией размытия) дают $\int dx \eta^2(x) \sim \frac{1}{\epsilon}$. Таким образом, наиболее сингулярный вклад в полную энергию равен

$$\delta E \sim \frac{1}{\epsilon} \log\left(\frac{\min\left(\Lambda, \epsilon^{-1}\right)}{m}\right).$$
 (34)

Заметим, что подход, используемый в работе, можно применять для любого начального состояния

Письма в ЖЭТФ том 118 вып. 11-12 2023

системы. На рис. 1а, с показана плотность энергии системы после квенча (31) для вакуумного начального состояния ($f_p = 0$), а на рис. 1b, d – для случая, когда система в начальный момент времени находилась при температуре $T \gtrsim m$ с бозевской функцией распределения $f_p = (e^{\hbar \omega_p/T} - 1)^{-1}$. Видно, что чем выше температура, тем среда сильнее возбуждается при действии локального возмущения. Этот эффект является прямым проявлением бозевской статистики рассматриваемой задачи. Локальный квенч для систем, в начальный момент времени находящихся при конечной температуре, также был рассмотрен в [13].

Рис. 1. (Цветной онлайн) Распределение плотности энергии в пространстве в зависимости от времени после локального квенча в точке $x_q = 0$. В качестве начального состояния системы выбрано тепловое с температурами T = 0 (a), (c) и T = 1.5m (b), (d). Функция размытия предполагается гауссовой с шириной $\epsilon m = 0.25$ (a), (b) и $\epsilon m = 2$ (c), (d). Координата и время измеряются в единицах обратной массы

Верхние и нижние картинки на рис. 1 отличаются величиной ширины функции размытия ϵ . Эта величина определяет максимальный импульс рождаемых при квенче частиц $p_{\max} \sim \frac{1}{\epsilon}$. Это позволяет оценить характерную скорость распространения фронта возмущения плотности энергии как максимальную групповую скорость частиц v_{\max} :

$$v_{\max} = \frac{\partial \omega_p}{\partial p} \sim \frac{p_{\max}}{\sqrt{p_{\max}^2 + m^2}} \sim \frac{1}{\sqrt{1 + m^2 \epsilon^2}}.$$
 (35)

Если область возмущения мала ($\epsilon \ll m^{-1}$), то возмущение распространяется со скоростью света $v_{\rm max} \sim 1$ (рис. 1a, b). В обратном случае ($\epsilon \gg m^{-1}$) групповая скорость мала $v_{\rm max} \sim \frac{1}{m\epsilon}$ и фронт распространяется медленнее (рис. 1с, d). Подобная смена режима наблюдалась в работе [10] для квенча $\hat{Q} \sim \hat{\varphi}$. Судя по всему, такое поведение является универсальным и не зависит от начального состояния и конкретного вида оператора квенча.

4. Обсуждение. В предыдущем разделе мы подробно рассмотрели эволюцию плотности энергии после квенча вида $\hat{Q}(x_q) = e^{-i\frac{\alpha}{\hbar}\hat{\varphi}_s^2(x_q)}$. Можно показать, что для более общего вида оператора квенча $\hat{Q}(x_q) = e^{-i\frac{\alpha}{\hbar}V(\hat{\varphi}_s(x_q))}$ с произвольным $V(\hat{\varphi}_s(x_q))$ плотность энергии после квенча дается выражением:

$$\langle \hat{\varepsilon} \rangle_t^Q = \langle \hat{\varepsilon} \rangle_t - \alpha \Big(m^2 G_R^s(t, x) \big\langle \phi_c(t, x) V'(\Phi_s) \big\rangle_{\text{i.c.}} + \\ + \partial_t G_R^s(t, x) \big\langle \partial_t \phi_c(t, x) V'(\Phi_s) \big\rangle_{\text{i.c.}} + \\ + \partial_x G_R^s(t, x) \big\langle \partial_x \phi_c(t, x) V'(\Phi_s) \big\rangle_{\text{i.c.}} \Big) + \\ + \frac{1}{2} \alpha^2 \big\langle V'(\Phi_s) V'(\Phi_s) \big\rangle_{\text{i.c.}} \Big(m^2 \big(G_R^s(t, x) \big)^2 + \\ + \big(\partial_t G_R^s(t, x) \big)^2 + \big(\partial_x G_R^s(t, x) \big)^2 \Big).$$
(36)

Входящие в это выражение средние по начальным условиям $\langle \ldots \rangle_{i.c.}$ могут не быть простыми парными корреляторами как в рассмотренном выше примере. В этом случае характерное поведение плотности энергии будет напрямую зависеть от корреляций присутствовавших в системе в начальный момент времени.

Выражение (36) позволяет провести сравнение с результатами, полученными ранее в конформной теории поля. В рамках конформной теории может быть эффективно рассмотрен случай, когда $\hat{Q}(x)$ – это примарное поле. В качестве такого примера мы рассмотрим вершинный оператор $\hat{Q}(x) = \hat{\mathcal{V}}_{\alpha}(x) =: e^{i\alpha\hat{\varphi}(x)}$: с конформными размерностями $h = \bar{h} = \alpha^2/(8\pi)$ [22]. Здесь при помощи : ... : обозначено нормальное упорядочение. На языке техники Келдыша мы должны рассмотреть случай потенциала $V(\varphi) = -\varphi$ и вакуумного начального состояния T = 0 ($f_p = 0$). Кроме того, необходимо выбрать функцию "размытия" в виде:

$$\eta(x) = \int \frac{dp}{2\pi} e^{ipx-\epsilon\omega_p} = \frac{m\epsilon}{\pi\sqrt{x^2+\epsilon^2}} K_1\left(m\sqrt{x^2+\epsilon^2}\right),\tag{37}$$

где $K_{\nu}(z)$ – функция Макдональда, ϵ – малый параметр (ширина функции "размытия"). Доказательство этого утверждения выходит за рамки формата писем, поэтому мы поместили его в дополнительные материалы (см. дополнительные материалы). Кроме того, в дополнительных материалах мы рассмотрели оператор квенча вида $\hat{Q}(x) = \hat{\varphi}(x)$, который не является примарным, но был подробно рассмотрен в работе [10]. Для потенциала вида $V(\varphi) = -\varphi$ выражение (36) сводится к следующему:

$$\langle \hat{\varepsilon} \rangle_t^Q = \langle \hat{\varepsilon} \rangle_t + \frac{1}{2} \alpha^2 \Big(m^2 \big(G_R^s(t, x) \big)^2 \\ + \big(\partial_t G_R^s(t, x) \big)^2 + \big(\partial_x G_R^s(t, x) \big)^2 \Big).$$
 (38)

Для функции "размытия" (37) все интегралы могут быть вычислены точно. В частности, "размытая" запаздывающая функция Грина имеет вид

$$G_R^s(t,x) = \int dy \ \eta(y - x_q) G_R(t,x-y)$$

$$= -\theta(t) \int \frac{dp}{2\pi} \frac{\sin(\omega_p t)}{\omega_p} e^{-ip(x-x_q)-\epsilon\omega_p}$$

$$= \frac{i}{2\pi} \theta(t) \left(K_0 \left(m\sqrt{(x-x_q)^2 + (\epsilon-it)^2} \right) - K_0 \left(m\sqrt{(x-x_q)^2 + (\epsilon+it)^2} \right) \right).$$
(39)

Особенно просто ответ выглядит в случае безмассового поля $m \to 0$ (которое описывается конформной теорией с центральным зарядом c = 1), когда

$$G_R^s(t,x) = \frac{i}{4\pi} \log\left(\frac{(x-x_q)^2 + (\epsilon+it)^2}{(x-x_q)^2 + (\epsilon-it)^2}\right), \quad (40)$$

а значит плотность энергии после квенча равна:

$$\langle \hat{\varepsilon} \rangle_t^Q = \langle \hat{\varepsilon} \rangle_t + \frac{\alpha^2}{4\pi^2} \left(\frac{\epsilon^2}{((x - x_q - t)^2 + \epsilon^2)^2} + \frac{\epsilon^2}{((x - x_q + t)^2 + \epsilon^2)^2} \right).$$
(41)

Этот ответ полностью совпадает с результатами работы [24] (формула (34)) и работы [10] (формулы (2.7), (2.9)) с учетом выбора нормировки поля и определения плотности энергии.

Далее рассмотрим вопрос о расходимостях, которые могут возникнуть при вычислении плотности энергии после локального квенча вида $\hat{Q}(x_q) = e^{-i\frac{lpha}{\hbar}V(\hat{arphi}_s(x_q))}$. При конечной величине ширины функции "размытия" є входящие в выражение (36) "размытые" запаздывающие функции Грина $G_{R}^{s}(t,x)$ не содержат особенностей на действительной оси (см., например, выражения (39), (40)), поэтому все возможные расходимости могут возникать только при вычислении средних по начальным условиям. В общем случае эти средние определяются формой Вигнеровского функционала, что требует отдельного детального исследования. Однако для гауссовых начальных условий анализ расходимостей может быть проведен при помощи теоремы Вика. В этом случае возникают два типа спариваний $\langle \Phi_s^2 \rangle_{\rm i.c.}$ и $G_K^s = \langle \phi_c \Phi_s \rangle_{\text{i.c.}}$. Можно показать, что для конечной ϵ интегралы, входящие в выражения (30) также будут сходящимися. Таким образом, для гауссовых начальных условий итоговый ответ для плотности энергии после рассматриваемого квенча будет конечным, по крайней мере, для полиномиальных $V(\hat{\varphi}_s)$. Заметим, что при анализе расходимостей важно различать ширину функции размытия ϵ и параметр ультрафиолетового обрезания теории λ (34). При $\epsilon \gg \Lambda^{-1}$ после квенча не возбуждаются степени свободы с энергией $\sim \Lambda$, а значит итоговый ответ не чувствителен к ультрафиолетовому поведению теории.

5. Заключение. В работе предложен новый подход к описанию локального возмущения (квенча) в скалярной теории поля с использованием техники Келдыша. В рамках данного подхода не используется процедура аналитического продолжения, которая в ряде случаев может быть неоднозначной [10]. Кроме того, представленный в работе метод позволяет рассматривать системы, находящиеся в исходный момент времени в произвольном начальном состоянии.

Для квенча $\hat{Q}(x_q) = e^{-i\frac{\alpha}{\hbar}\hat{\varphi}_s^2(x_q)}$ вычислена эволюция плотности энергии как для вакуумного начального состояния, так и для состояния с произвольной начальной функцией распределения f_p . Описаны два режима распространения фронта возмущения, зависящие от величины области локального возмущения (ширины функции "размытия" ϵ).

Подход к описанию динамики системы после мгновенного локального возмущения, полученный в данной работе, может быть обобщен на случай ненулевого взаимодействия, по крайней мере, в квазиклассическом приближении в технике Келдыша. Это является темой для дальнейших исследований.

- 1. J. Berges, arXiv:1503.02907.
- P. Ruggiero, P. Calabrese, T. Giamarchi, and L. Foini, SciPost Phys. 13, 111 (2022).
- P. Calabrese and J. Cardy, J. Stat. Mech. 2007, P06008 (2007).

- P. Calabrese and J. Cardy, J. Stat. Mech. 2016, 064003 (2016).
- S. Sotiriadis, P. Calabrese, and J. Cardy, Europhys. Lett. 87, 20002 (2009).
- S. Sotiriadis and J. Cardy, Phys. Rev. B 81, 134305 (2010).
- S.R. Das, D.A. Galante, and R.C. Myers, J. High Energ. Phys. 2015, 73 (2015).
- S.R. Das, D.A. Galante, and R.C. Myers, J. High Energ. Phys. 2016, 164 (2016).
- D. Szász-Schagrin, I. Lovas, and G. Takács, Phys. Rev. B 105, 014305 (2022).
- D. S. Ageev, A. I. Belokon, and V. V. Pushkarev, J. High Energ. Phys. **2023**, 188 (2023).
- D. Horvath, S. Sotiriadis, M. Kormos, and G. Takacs, SciPost Phys. 12, 144 (2022).
- M. Nozaki, T. Numasawa, and T. Takayanagi, Phys. Rev. Lett. **112**, 111602 (2014).
- P. Caputa, J. Simón, A. Štikonas, and T. Takayanagi, J. High Energ. Phys. **2015**, 102 (2015).
- P. Calabrese and J. Cardy, J. Stat. Mech. 2007, P10004 (2007).
- L.V. Keldysh, ZhETF 47, 1515 (1964) [Sov. Phys. JETP 20, 1018 (1965)].
- 16. J. Schwinger, J. Math. Phys. 3, 2 (1961).
- 17. П.И. Арсеев, Успехи физических наук **185**, 1271 (2015).
- A. V. Leonidov and A. A. Radovskaya, Pis'ma v ZhETF 101, 235 (2015).
- A. V. Leonidov and A. A. Radovskaya, Eur. Phys. J. C 79, 55 (2019).
- A. A. Radovskaya and A. G. Semenov, Eur. Phys. J. C 81, 704 (2021).
- Н. Н. Боголюбов, Д. В. Ширков, Квантовые поля, 5-е изд., Физматлит, М. (2005) [N. N. Bogoliubov and D. V. Shirkov, Quantum Fields, Addison-Wesley, London (1983)].
- G. Mussardo, Statistical field theory: an introduction to exactly solved models in statistical physics, Oxford University Press, USA (2010).
- G. Delfino and M. Sorba, Nucl. Phys. B 974, 115643 (2022).
- P. Caputa, M. Nozaki, and T. Takayanagi, Prog. Theor. Exp. Phys. 2014, 093B06 (2014).