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Significant progress towards stable operation of

multi-qubit quantum systems with relatively short de-

coherence times allows nowadays to address simple op-

timization tasks [1–4]. The wider use of these noisy

intermediate-scale quantum processors is hampered by

the noise inevitably present in quantum gates, which

severely limits the possible depth of a quantum circuit.

The problem can nevertheless be partially relaxed in

the approach of variational quantum computing, widely

accepted as the most viable way to achieve quantum

supremacy [5, 6].

As a rule, in most variational quantum algorithms,

with the variational quantum eigensolver (VQE) being

the most notable example, one looks for the ground state

of a given interacting quantum system [7]. In this case, a

quantum processor is used to prepare a family of probe

states as implemented by a parametrized quantum cir-

cuit, as well as to estimate the energy for that family of

state representing thus a multi- parameter cost function.

By virtue of standard optimization methods on a clas-

sical computer one minimizes the cost function to de-

termine the optimal parameters of the quantum circuit

that approximate the ground state of a given Hamilto-

nian. The main advantage of this methodology is in the

fact that one does not need to design a deep quantum

circuit [8–10].

It is believed that derivative-free methodology to op-

timization to be more noise-resilient, including but not

limited to Nelder–Mead algorithm and Powell’s conju-

gate direction method. We herein propose a derivative-

free optimization technique based on tensor train opti-

mizer (TTOpt) [11]. Particularly, we are to make use

of the transverse field Ising model (TFIM) with open

boundary conditions as the VQE algorithm in this case

faces the convergence issues when utilizing shallow cir-

cuits [12]. In our analysis, we rely on the use of both
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the hardware efficient ansatz (HEA) [9] and the Hamil-

tonian variational ansatz (HVA) [12]. We also address

the effect of the depolarizing error channel that repre-

sents a completely positive trace-preserving map and

transforms a given quantum state into the linear com-

bination of this state and maximally mixed state.

Our numerical findings are shown in Fig. 1 for

TFIM of n = 4, 6, and 8 qubits. A close inspec-

tion of Fig. 1a reveals that the HVA optimization with

Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS)

steadily improves with the citcuit depth L providing a

proper approximation to the ground state starting from

L = 4−8 layers. However, for extremely shallow circuits

down to L = 2 layers, it is not robust to random ini-

tialization of variational parameters. As opposed, the

TTOpt outperforms the BFGS optimizer for L = 2−4

layers. In the presence of the depolarizing noise speci-

fied the BFGS optimizer completely fails in achieving

convergence. On the contrary, the results of TTOpt do

not change much with noise providing a reasonable ac-

curacy in comparison to the BFGS optimizer. Thus, the

TTOpt seems to be noise-resilient at least for the case of

shallow circuits. Finally, if we switch to the HEA-type

ansatz the results of TTOpt are even more impressive

as illustrated in Fig. 1b. The TTOpt outperforms the

BFGS optimizer in the range of L = 1−3 layers for

both pure and noisy simulations. Meanwhile, the larger

number of qubits to be involved the deeper circuits have

to be utilized, making TTOpt more computationally de-

manding.
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Fig. 1. (Color online) Optimized cost function for TFIM E(θ) relative to its exact ground-state energy Egs plotted versus the
ansatz depth L, where the optimization is performed as based on the BFGS and TTOpt optimizers. The VQE simulations
are implemented for TFIM of n = 4, 6, and 8 qubits under open boundary conditions with: (a) – HVA and (b) – HEA being
used as variational quantum circuits. The BFGS results are averaged over 100 random initial guesses for the variational
parameters θ. The green and blue shaded areas depict the standard deviation of the optimized values for E(θ). The results
with noise are obtained by applying the depolarizing quantum channel for one-and two-qubit gates in quantum circuits, with
the depolarizing parameter being equal to 0.005
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