Уравнения состояния твердых фаз СО₂ при мегабарных давлениях

К. Д. Литасов^(**D**+1), *В. В. Бражкин*^(**D**+), *Н. Е. Сагатов*^(**D**+*), *Т. М. Инербаев*^(**D**+×)

+ Институт физики высоких давлений им. Л. Ф. Верещагина РАН, 108840 Троицк, Москва, Россия

*Новосибирский государственный университет, 630090 Новосибирск, Россия

[×] Евразийский национальный университет им. Л. Н. Гумилева, 010008 Астана, Казахстан

Поступила в редакцию 30 ноября 2023 г. После переработки 21 декабря 2023 г. Принята к публикации 22 декабря 2023 г.

С помощью эволюционных методов предсказания кристаллических структур подтверждена стабильность фаз CO₂ при давлениях до 1600 ГПа. Стабильными фазами CO₂ являются фазы $I\bar{4}2d$ (до 279 ГПа), $P4_2/nmc$ (279–952 ГПа), Pbcn (952–1018 ГПа) и $Pa\bar{3}$ (выше 1018 ГПа). С помощью первопринципных методов и высокотемпературных расчетов в квазигармоническом приближении в работе впервые были рассчитаны уравнения состояния стабильных фаз CO₂ до давлений около 1600 ГПа. Показано, что высокобарические фазы $P4_2/nmc$, Pbcn и $Pa\bar{3}$ имеют довольно высокие модули сжатия (290–415 ГПа). Фазы с шестерной координацией атомов углерода Pbcn и $Pa\bar{3}$ имеют более высокие значения коэффициента теплового расширения по сравнению с фазой $P4_2/nmc$.

DOI: 10.31857/S123456782403008X, EDN: spwayo

Введение. CO₂ является одним из главных компонентов системы C-O-H-N, которая является основополагающей при исследовании многих природных процессов, как в глубинах Земли, так и в космических объектах. Поэтому исследование физических свойств CO₂ в мультимегабарном (> 100 ГПа) интервале давлений является одной из принципиальных задач физики твердого тела, науках о Земле и химической космологии.

Наряду с водой, CO₂ остается одним из стабильных бинарных соединений (из жидких и газообразных) в системе C-O-H-N при давлениях до 400– 500 ГПа [1, 2] согласно теоретическим предсказанием кристаллических структур из первых принципов.

Эксперименты в ячейке с алмазными наковальнями и лазерным нагревом позволяют достаточно надежно охарактеризовать диаграммы состояния веществ до давлений 100–200 ГПа и в редких случаях – при более высоких давлениях. В случае CO_2 на фазовой диаграмме при давлениях до 120 ГПа установлено не менее 5 молекулярных фаз (некоторые обнаружены не во всех экспериментах и являются метастабильными), а также кристаллические полимерные и аморфные фазы сверхвысоких давлений [3, 4].

C помощью теоретических методов исследования проведен поиск стабильных структур фаз CO_2 , определены параметры уравнений состояния для неко-

торых из этих фаз и рассчитана линия плавления предсказанных фаз CO₂. Данные статических экспериментов дополнены предсказаниями о стабильности структур с шестерной координацией углерода при давлениях около 1 TПа и расчетами линии плавления фазы CO₂-V [5–7].

Диаграмма состояния жидкого CO₂ была экспериментально исследована до давлений порядка 1 TПа с помощью ударно-волновых экспериментов [8–12]. Предполагается, что в жидком состоянии CO₂ демонстрирует не менее сложные структурные превращения, что и в твердом состоянии [13]. При ударном сжатии молекулярная жидкая фаза CO₂ (L-I) стабильна до давлений около 40 ГПа [10], выше которого она превращается в полимерную жидкость с координацией атомов 3 и 4 (L-II) [9, 13]. Выше 100 ГПа CO₂ переходит в ионизированную фазу L-III [11].

В данной работе проведены расчеты по уточнению стабильности ранее найденных фаз высокого давления, а также впервые проведены расчеты P-V-T уравнений состояния стабильных фаз CO₂ в широком интервале давлений и температур.

Методы теоретических расчетов. Все расчеты проводились в рамках теории функционала плотности (DFT) в пакете программ VASP [14, 15]. Эффекты обменной корреляции рассматривались в приближении обобщенного градиента (GGA) по схеме PBE [16] или приближении локальной плотности (LDA). Электроны внутренних оболочек были

 $^{^{1)}{\}rm e\text{-}mail:}$ litasov@hppi.troitsk.ru

аппроксимированы с использованием псевдопотенциалов проекционных присоединенных волн (PAW), а валентные электроны были представлены с помощью базиса плоских волн с энергией обрезания 800 эВ. Валентные конфигурации были выбраны как $2s^22p^2$ и $2s^22p^4$ для С и О, соответственно. Зона Бриллюэна была разбита с помощью kточек сетки Монкхорста–Пака [17] с шагом 0.2 Å⁻¹. Поправки Ван-дер-Ваальса учитывались по методу DFT-D3 (IVDW = 11) [18]. Кроме псевдопотенциалов PBE, для сравнения использованы псевдопотенциалы SCAN [19], также имплементированные в VASP.

Предсказание кристаллических структур выполнялось с использованием метода случайной выборки. реализованного в пакете AIRSS [20, 21] и эволюционных алгоритмов, реализованных в пакете USPEX [22-24] при давлениях 300, 500, 800, 1000, 1500 и 2000 ГПа. Расчеты по предсказанию кристаллической структуры с использованием пакета USPEX проводились для 1-6 формульных единиц на элементарную ячейку. Размер первого поколения в расчетах составил 65 структур. После релаксации 55 % структур с наименьшими энтальпиями были отобраны и использованы для создания следующего поколения следующим образом: 40 % всех структур были созданы за счет наследственности, 15% - за счет атомных мутаций, 10 % – за счет перестановок решетки и 35 % – случайным образом. В среднем при каждом давлении производилось и релаксировалось 35 поколений. Используя AIRSS, около 4000 структур были случайным образом сгенерированы и релаксированы при каждом давлении. Во всех расчетах по прогнозированию кристаллической структуры релаксация среднего качества проводилась с использованием сопряженного градиента. Настройки среднего качества были следующими: энергия отсечки плоской волны -500 эВ; сетка отбора проб по k-точкам Монкхорста-Пака с шагом – 0.5 Å⁻¹; Гауссово размытие с параметром $\sigma = 0.1$ эВ.

Для учета температурного эффекта был использован метод решеточной динамики в квазигармоническом приближении. Для этой цели были рассчитаны частоты колебаний решетки с использованием метода конечных смещений, реализованного в программе РНОNОРҮ [25]. Силовые константы в реальном пространстве были рассчитаны с использованием метода суперячейки и метода конечных смещений с суперячейкой $2 \times 2 \times 2$ и *q*-сеткой $31 \times 31 \times 31$ для всех структур. При этом использовались качественные настройки: энергия обрезания – 1000 эВ, шаг дискретизации сетки *k*-точек – 0.18 Å⁻¹, $\sigma = 0.05$ эВ.

Как правило, квазигармоническое приближение корректно работает до 0.5-0.75 температуры плавления кристалла, но также можно ожидать физически правильных качественных результатов даже вблизи температуры плавления [26, 27]. Также известно, что квазигармоническое приближение хорошо работает для систем с объемом ячейки менее $22 \text{ Å}^3/\text{атом}$, а точность увеличивается с уменьшением атомного объема [28]. При высоких температурах и сверхвысоких давлениях, расхождение в результатах, полученных с помощью квазигармонического приближения и, например, молекулярной динамики становятся пренебрежимо малы [29, 30]. Это связано с тем, что вклад ангармонизмов существенно уменьшается с ростом давления. Следовательно, в нашем случае (давления выше 200 ГПа), использование квазигармонического приближения является приемлемым.

Параметры упругости фаз охарактеризованы через уравнение состояния Берча–Мурнагана третьего порядка, где давление определяется следующим выражением [31]:

$$P = 1.5 K_T[(z^{7/3} - z^{5/3}) \times (1 + 0.75(K_T' - 4)(z^{2/3} - 1)],$$
(1)

здесь K_T – изотермический модуль объемного сжатия, $z = V_{0T}/V$, V_{0T} – объем при 1 атм, V – объем при высоком давлении и K'_T – производная K_T по давлению.

Результаты и обсуждение. Проведенные расчеты по предсказанию структур при 300, 500, 800, 1000, 1200 и 1500 ГПа с использованием GGA-PBE почти полностью воспроизвели результаты работы [5] несмотря на то, что в оригинальной работе использовались другие методы предсказания структур (рис. 1). Использование дополнительных методов расчета LDA и SCAN приводит к близким результатам (табл. 1). Стабильными фазами СО₂ на разных интервалах давления от 100 до 1600 ГПа являются фазы с четверной координацией атомов углерода $I\bar{4}2d$ (или CO₂-V) (до 279 ГПа) и $P4_2/nmc$ (279–952 ГПа), а также фазы с шестерной координацией атомов углерода Pbcn (952–1018 ГПа) и $Pa\bar{3}$ (выше 1018 ГПа) (см. также [5]). С учетом нулевых колебаний (при $T = 0 \,\mathrm{K}$) давление перехода $I\bar{4}2d - P4_2/nmc$ не меняется, тогда как давления переходов $P4_2/nmc-Pbcn$ и $Pbcn-Pa\bar{3}$ немного понижаются до 932 и 1013 ГПа, соответственно (табл. 1).

Важно подчеркнуть, что в предыдущих работах никак не отмечалось, что структура $Pa\bar{3}$ – это структура пирита (FeS₂), а структурный переход от *Pbcn* к $Pa\bar{3}$ также характерен для системы SiO₂, где этот

Фазовый переход	GGA-PBE ($\Gamma\Pi a$)	LDA ($\Gamma\Pi a$)	SCAN ($\Gamma\Pi a$)	[5]
	Без учета нулевых	колебаний (ZPE) фононе	OB	
$I\bar{4}2d-P4_2/nmc$	279	262	288	285
$P4_2/nmc-Pbcn$	952	920	1008	968
$Pbcn-Pa\bar{3}$	1018	994	1045	1032
	С учетом нулевых	колебаний (ZPE) фононо)B	-
$I\bar{4}2d-P4_2/nmc$	279	251	288	
$P4_2/nmc-Pbcn$	932	884	983	
$Pbcn-Pa\bar{3}$	1013	972	1043	

Таблица 1. Давления фазовых переходов фаз СО₂, рассчитанные разными методами

Рис. 1. Разница энтальпий фаз, рассчитанная с использованием GGA-PBE для наиболее стабильных модификаций CO₂ в области давлений фазовых переходов: (a) – 100–400 ГПа, значения энтальпий нормированы относительно CO₂-*I*42*d* и (b) – 800–1400 ГПа, значения энтальпий нормированы относительно CO₂-*Pbcn*

переход наблюдается при давлении около 215 ГПа [32]. При этом Pbcn – это структура α -PbO₂ (SiO₂-сейфертит). Как показано ниже, при высокой температуре для CO₂ обе PT-границы (в CO₂ и в SiO₂) имеют отрицательный наклон.

Для установленных стабильных фаз CO₂ были рассчитаны P-V-T уравнения состояния и термодинамические параметры. Данные, рассчитанные по уравнению состояния Берча–Мурнагана (ур. (1)) представлены в табл. 2. Для фаз $P4_2/nmc$, *Pbcn* и $Pa\bar{3}$ рассчитанные модули всестороннего сжатия являются довольно высокими. Возможно, это связано с трудностями в определении V_0 при высоких давлениях, когда фаза не стабильна при 0 ГПа. Тем не менее представленные в табл. 2 данные корректно описывают кривые сжимаемости фаз CO₂ на выбранном интервале давлений.

Параметры сжимаемости, полученные по методу GGA-PBE, практически совпадают с LDA. Они отличаются только по объему при нулевых давлениях. Объем ячейки, рассчитанный по методу LDA, меньше объема, рассчитанного по методу GGA-PBE на 5.4% при 10 ГПа и на 2.3% при 1000 ГПа. Данные, рассчитанные по методу SCAN, практически совпадают с GGA-PBE.

На рисунке 2 для фазы *I*42*d* проведено сравнение с предыдущими данными. Показано хорошее соответствие данных LDA с экспериментальными данными [33] и данных GGA-PBE с экспериментальными данными [4,34]. Обычно, для других фаз экспериментальная кривая располагается между GGA-PBE и LDA и для вычислений берется среднее значение объема при нулевом давлении.

Кривые сжимаемости для всех стабильных фаз CO₂ при давлениях до 1200 ГПа приведены на рис. 3. Здесь же показаны кривые, рассчитанные при высокой температуре (3000 К). При переходе $I\bar{4}2d-P4_2/nmc$ объем ячейки понижается на 1%, при переходе $P4_2/nmc-Pbcn$ – на 4%, а при переходе от $Pbcn-Pa\bar{3}$ – на 2%.

фазы 142и показаны	также данные	pac icrob in	0 Me104	U LDA
Интервал давлений, ГПа	V ₀ , Å ³ на ячейку	K_0 , ГПа	K'	RMS
$I\bar{4}2d$, GGA-PBE				
20-300	24.82	92.35	4.70	2.02
20-100	24.12	122.62	3.97	0.26
$I\bar{4}2d$, LDA				
20-300	23.50	95.07	5.03	2.00
20-100	22.79	130.60	4.14	0.43
$P4_2/nmc$				
200-1200	19.72	291.82	3.84	8.71
280-1200	19.39	314.96	3.80	6.13
Pbcn				
400-1200	17.24	415.42	3.76	3.68
800-1200	17.23	415.45	3.77	2.40
$Pa\bar{3}$				
420-1600	17.23	380.39	3.83	1.36
800-1600	17.23	380.40	3.83	0.51

Таблица 2. Параметры уравнения состояния Берча– Мурнагана 3 порядка для фаз CO_2 , рассчитанные при 0 K в различных интервалах давлений по методу GGA-PBE. Для фазы $I\bar{4}2d$ показаны также данные расчетов по методу LDA

RMS – среднеквадратичное отклонение.

Сравнение расчетных значений теплового расширения для стабильных фаз CO_2 (рис. 4, табл. 3) показывает, что высокобарические фазы Pbcn и $Pa\bar{3}$ имеют более высокое тепловое расширение по сравнению с фазой $P4_2/nmc$, что может обуславливать отрицательный наклон границы перехода (см. ниже).

Таблица 3. Тепловое расширение фаз CO₂, (α , 10⁻⁶ K⁻¹), рассчитанное при 300 K и разных давлениях (без учета ангармонических колебаний)

	Давление, ГПа			
Фаза	100	300	500	1000
$I\bar{4}2d$	4.80	1.90	-	-
$P4_2/nmc$	—	1.67	0.95	0.42
Pbcn	-	-	2.34	0.66
$Pa\bar{3}$	_	-	2.81	0.71

Перед расчетом фазовой диаграммы CO₂ было проведено сравнение границы перехода CO₂-IV– CO₂-V ($I\bar{4}2d$) с работой [35], где использовались сходные методы расчета. Отклонение границы находится в пределах 2ГПа, что подтверждает точность выбранных методик расчета. Результаты расчета фазовой диаграммы CO₂ с помощью метода GGA-PBE показаны на рис. 5. Рассчитанная *PT*граница $P4_2/nmc-Pbcn$ хорошо согласуется с данными из работы [5]. Остальные *PT*-границы до этого не были исследованы. *PT*-граница $I\bar{4}2d-P4_2/nmc$ имеет небольшой отрицательный наклон, равный

Рис. 2. Сравнение кривых сжимаемости фазы CO₂-I42d с данными предыдущих теоретических [33, 35] и экспериментальных (Exp.) работ [4, 33–34]

Рис. 3. Кривые сжимаемости фаз CO_2 в интервале давлений 200–1200 ГПа в области фазовых переходов, рассчитанные помощью методов GGA-PBE, LDA и GGA-PBE при 3000 К

-2 МПа/К. *PT* граница $P4_2/nmc-Pbcn$ имеет отрицательный наклон равный -10 МПа/К при 0–1000 К, который увеличивается до -33 МПа/К при 4000–5000 К. *PT*-граница $Pbcn-Pa\bar{3}$ имеет небольшой отрицательный наклон в среднем -3 МПа/К (рис. 5). Расчеты с помощью методик LDA и SCAN при высоких температурах немного (в пределах 10 ГПа) занижают и завышают давления перехода, соответственно.

Рис. 4. Тепловое расширение фаз CO₂, рассчитанное при 300 K и разных давлениях (без учета ангармонических колебаний)

Рис. 5. Фазовая *P-T* диаграмма CO₂, рассчитанная с помощью метода GGA-PBE. Пунктиром изображена граница *P*4₂/*nmc*-*Pbcn* воспроизведенная из данных в работе [5]

Таким образом, с помощью первопринципных методов и высокотемпературных расчетов в квазигармоническом приближении в работе впервые были рассчитаны уравнения состояния стабильных фаз CO_2 до давлений около 1600 ГПа. Показано, что высокобарические фазы $P4_2/nmc$, Pbcn и $Pa\bar{3}$ имеют довольно высокие модули сжатия (290–415 ГПа). Фазы с шестерной координацией атомов углерода Pbcnи $Pa\bar{3}$ имеют более высокие значения коэффициента теплового расширения по сравнению с фазой $P4_2/nmc$. Соответственно, границы перехода в районе 900–1000 ГПа имеют отрицательный наклон. Финансирование работы. Исследование выполнено при финансовой поддержке научной программы Национального Центра Физики и Математики (НЦФМ), проект "Исследования в сильных и сверхсильных магнитных полях".

Конфликт интересов. Авторы заявляют об отсутствии конфликтов интересов.

- A.S. Naumova, S.V. Lepeshkin, P.V. Bushlanov, and A.R. Oganov, J. Phys. Chem. A **125**, 3936 (2021).
- L.J. Conway, C.J. Pickard, and A. Hermann, Proc. Natl. Acad. Sci. 118, e2026360118 (2021).
- K. D. Litasov, A. F. Goncharov, and R. J. Hemley, Earth Planet. Sci. Lett. 309, 318 (2011).
- K. F. Dziubek, M. Ende, D. Scelta, R. Bini, M. Mezouar, G. Garbarino, and R. Miletich, Nat. Commun. 9, 3148 (2018).
- C. Lu, M. Miao, and Y. Ma, J. Amer. Chem. Soc. 135, 14167 (2013).
- A. M. Teweldeberhan, B. Boates, and S. A. Bonev, Earth Planet. Sci. Lett. 373, 228 (2013).
- C. J. Wu, D. A. Young, P. A. Sterne, and P. C. Myint, J. Chem. Phys. 151, 224505 (2019).
- В. Н. Зубарев, Г. С. Телегин, Доклады АН СССР 142(2), 309 (1962).
- W. J. Nellis, A. C. Mitchell, F. H. Ree, M. Ross, N. C. Holmes, R. J. Trainor, and D. J. Erskine, J. Chem. Phys. 95, 5268 (1991).
- 10. G. L. Schott, Intl. J. High Pressure Res. 6, 187 (1991).
- L.E. Crandall, J.R. Rygg, D.K. Spaulding, T.R. Boehly, S. Brygoo, and P.M. Celliers, Phys. Rev. Lett. **125**, 165701 (2020).
- L. E. Crandall, J. R. Rygg, D. K. Spaulding, M. F. Huff, M. C. Marshall, and D. N. Polsin, Phys. Plasmas 28, 022708 (2021).
- B. Boates, A. M. Teweldeberhan, and S. A. Bonev, Proc. Natl. Acad. Sci. **109**, 14808 (2012).
- G. Kresse and J. Furthmuller, Comp. Mater. Sci. 6, 15 (1996).
- G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
- J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- H. K. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
- S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. **132**, 15 (2010).
- 19. Y. Yao and Y. Kanai, J. Chem. Phys. 146, 22 (2017).
- C. J. Pickard and R. J. Needs, Phys. Rev. Lett. 97, 045504 (2006).
- C. J. Pickard and R. J. Needs, J. Phys. Condens. Matter 23, 053201 (2011).

- A.R. Oganov and C.W. Glass, J. Chem. Phys. 124, 244704 (2006).
- A. R. Oganov, A. O. Lyakhov, and M. Valle, Acc. Chem. Res. 44, 227 (2011).
- A. O. Lyakhov, A. R. Oganov, H. T. Stokes, and Q. Zhu, Comp. Phys. Comm. **184**, 1172 (2013).
- 25. A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015).
- 26. L.N. Kantorovich, Phys. Rev. B 51, 3520 (1995).
- 27. L. N. Kantorovich, Phys. Rev. B 51, 3535 (1995).
- 28. L.C. Gong, B.Y. Ning, C. Ming, T.C. Weng, and X. J. Ning, J. Phys. Condens. Matter **33**, 085901 (2020).
- M. Matsui, G.D. Price, and A. Patel, Geophys. Res. Lett. 21, 1659 (1994).
- A. Metsue and T. Tsuchiya, Geophys. J. Int. **190**, 310 (2012).

- K. D. Litasov, P.I. Dorogokupets, E. Ohtani, Y. Fei, A. Shatskiy, I.S. Sharygin, P.N. Gavryushkin, S.V. Rashchenko, Y.V. Seryotkin, Y. Higo, K. Funakoshi, A.D. Chanyshev,and S.S. Lobanov, J. Appl. Phys. **113**, 093507 (2013).
- P.K. Das, C.E. Mohn, J.P. Brodholt, and R.G. Trønnes, Amer. Mineral. J. Earth Planet. Mat. 105, 1014 (2020).
- 33. F. Datchi, B. Mallick, A. Salamat, and S. Ninet, Phys. Rev. Lett. **108**, 125701 (2012).
- 34. Y. Seto, D. Nishio-Hamane, T. Nagai, N. Sata, and K. Fujino, J. Phys. Conf. Ser. **215**, 012015 (2010).
- B. H. Cogollo-Olivo, S. Biswas, S. Scandolo, and J. A. Montoya, Phys. Rev. Lett. **124**, 095701 (2020).