Эффект сверхпроводящего спинового клапана в гетероструктуре Со/Pb/Co с изолирующими прослойками

А. А. Камашев⁺¹⁾, Н. Н. Гарифьянов⁺, А. А. Валидов⁺, В. Е. Катаев^{*}, А. С. Осин[×], Я. В. Фоминов[×], И. А. Гарифуллин⁺

⁺Казанский физико-технический институт им. Е.К. Завойского ФИЦ Казанский научный центр РАН, 420029 Казань, Россия

*Leibniz Institute for Solid State and Materials Research, D-01069 Dresden, Germany

 $^{\times}$ Институт теоретической физики им. Л. Д. Ландау РАН, 142432 Черноголовка, Россия

Поступила в редакцию 5 декабря 2023 г. После переработки 27 декабря 2023 г. Принята к публикации 11 января 2024 г.

Исследованы сверхпроводящие свойства гетероструктуры Co/Pb/Co с тонкими изолирующими прослойками, роль которых играют окисленные интерфейсы сверхпроводник/ферромагнетик. Изучено поведение температуры перехода гетероструктуры в сверхпроводящее состояние (T_c) при изменении взаимной ориентации намагниченностей ферромагнитных слоев с антипараллельной на параллельную (так называемый эффект сверхпроводящего спинового клапана). Как правило, данный эффект наиболее выражен в случае идеального металлического контакта на границах раздела сверхпроводник/ферромагнетик. Мы же наблюдали значительный эффект сверхпроводящего спинового клапана для структур с ухудшенными интерфейсами сверхпроводник/ферромагнетик. Разница в T_c при изменении взаимной ориентации намагниченностей двух ферромагнитных слоев Co с антипараллельной на параллельную составила 0.2 K при оптимальной толщине сверхпроводящего Pb-слоя. Наши исследования верифицируют ранние, до сих пор не подтвержденные результаты Дойчера и Менье [G. Deutscher and F. Meunier, Phys. Rev. Lett. 22, 395 (1969)], и открывают новые интересные возможности улучшения параметров сверхпроводящего спинового клапана.

DOI: 10.31857/S1234567824040086, EDN: szruqq

Введение Различные теоретические модели и практические конструкции сверхпроводящего спинового клапана (ССК) исследуются на протяжении последних 25 лет (см., например, [1-10]). Фундаментальный интерес к таким системам связан с тем, что в них существует возможность пространственного разделения сверхпроводимости (С) и ферромагнетизма (Ф) в рамках одной структуры для исследований их взаимного влияния на свойства друг друга (см., например, [11–17]). Помимо этого, структуры ССК являются перспективными элементами сверхпроводящей спинтроники (см., например, [18–22]). Впервые теоретическая модель ССК конструкции $\Phi 1/\Phi 2/C$ была предложена О и др. в 1997 г. [1]. В 1999 году Тагировым [2] и Буздиным и др. [3] была предложена другая модель конструкции Ф1/С/Ф2. Здесь, Ф1 и Ф2 – ферромагнитные слои; С – сверхпроводящий слой. Принцип работы ССК основан на эффекте близости С/Ф. В структурах ССК можно управлять степенью подавления сверхпроводимости путем изменения взаимной ориентации намагниченностей ферромагнитных слоев, то есть величиной среднего обменного поля Φ -слоев, действующего на С-слой. Температура перехода в сверхпроводящее состояние T_c в структурах ССК минимальна/максимальна для параллельной (П)/антипараллельной (АП) ориентации намагниченностей Φ -слоев, соответственно. Величина эффекта ССК определяется как разница температур $\Delta T_c = T_c^{AP} - T_c^P$. Полный эффект ССК реализуется только в том случае, когда ΔT_c превышает ширину сверхпроводящего перехода δT_c в П- и АП-ориентациях. Впервые экспериментально реализовать полный эффект ССК удалось в 2010 г. для конструкции $\Phi 1/\Phi 2/C$ [10].

На сегодняшний день подробно изучены различные конструкции ССК с использованием разнообразных элементных металлов и сплавов. Результаты этих исследований указывают, что, возможно, уже достигнут предел величины эффекта ССК (см., например, [23–25]). В основе работы этих конструкций лежит эффект близости С/Ф, который определяется качеством границы раздела между С- и Ф-слоями. Именно поэтому всегда особое внимание в структу-

¹⁾e-mail: kamandi@mail.ru

рах ССК уделялось интерфейсу С/Ф. Обычно считается, что для наблюдения эффектов ССК необходимо, чтобы интерфейс C/Φ был совершенным с точки зрения морфологии (см., например, [26]). Однако, в 1969 г. Дойчер и Менье [27] наблюдали значительный эффект ССК $\Delta T_c \sim 0.3 \,\mathrm{K}$ в гетероструктуре FeNi/In/Ni с окисленными интерфейсами C/Φ , что с сегодняшней точки зрения, действительно, удивительно. Окисление ферромагнитных FeNi- и Niслоев объяснялось необходимостью ослабления эффекта близости C/Φ , и, как следствие, сверхпроводимость в In-слое могла быть не полностью подавлена средним обменным полем Ф-слоев. В работе же Ли и др. [28] показано, что для наблюдения эффектов ССК нужен непосредственный контакт между ферромагнитным изолятором и сверхпроводником. При этом введение тончайшего изолирующего немагнитного слоя (барьера) на границу раздела С/Ф приводило к полному подавлению эфекта близости С/Ф, и, как следствие, эффекта ССК.

Однако, в работе Дойчера и Менье [27] ухудшение границы С/Ф привело к наблюдению значительного эффекта ССК. Насколько нам известно, работа Дойчера и Менье [27] не получила подтверждения для других конструкций ССК, хотя некоторые экспериментальные группы пытались воспроизвести этот неожиданный результат.

В настоящей работе представлено дальнейшее развитие концепции Дойчера и Менье [27]. Мы исследовали сверхпроводящие свойства структур ССК, состоящих из других ферромагнитных и сверхпроводящих материалов по сравнению с описанными в работе [27]. Следует отметить, что работа [27] являлась одной из первых, где исследовались тонкопленочные гетероструктуры на базе С/Ф. В то время отсутствовало глубокое понимание явлений, происходящих в таких структурах. Поэтому параметры структуры (толщины слоев и условия их приготовления) в работе [27] могли быть неоптимальными.

Мы изготовили структуры ССК Co1/Pb/Co2 с тонкими изолирующими прослойками на границах раздела Co1/Pb и Pb/Co2. Формирование окисленных изолирующих прослоек на границах раздела было сделано по примеру работ [27, 29]. Мы изучили зависимость величины эффекта ССК ΔT_c от толщины Pb-слоя. Было установлено, что величина ΔT_c достигает 0.2 К при оптимальной толщине Pb-слоя, что превосходит большинство значений эффекта для структур с идеальными границами раздела С/Ф.

Образцы. Образцы изготовлялись на напылительной установке фирмы BESTEC. Была приготовлена основная серия образцов $\text{CoO}_x(3.5 \text{ нм})/$

 $m Co1(3 \, hm)/И1/Pb(d_{Pb})/И2/Co2(3 \, hm)/Si_3N_4(85 \, hm)$

с варьируемой толщиной Pb-слоя d_{Pb} в пределах от 40 до 120 нм. Образцы напылялись на высококачественные монокристаллические подложки MgO (001). Здесь: CoO_x – антиферромагнитный (АФ) слой, необходимый для фиксации намагниченности Со1-слоя; Со1 и Со2 – ферромагнитные Ф1- и Ф2-слои; И1 и И2 – тонкие оксидные изолирующие прослойки; Pb – сверхпроводящий слой, Si₃N₄ – защитный слой. Слои наносились методами электронно-лучевого испарения (Co, Pb) и магнетронного напыления на переменном токе (Si_3N_4) . Слой CoO_r был приготовлен окислением металлического Со-слоя в атмосфере кислорода при давлении 100 мбар в течение двух часов. После этого в камере молекулярно-лучевой эпитаксии (МЛЭ) наносился Со1-слой поверх слоя CoO_x . Слой И1 формировался на поверхности Co1 в загрузочной камере в атмосфере кислорода при давлении около $\sim 10^{-2}$ мбар в течение 60 с. Наши исследования показали, что такое короткое время окисления не приводит к образованию антиферромагнитного CoO_x . После этого в МЛЭ камере наносился Pb-слой при температуре подложки $T_{\rm sub} \sim 150 \, {\rm K}$. Такая температура подложки была необходима для получения гладкого Pb-слоя [26]. Слой Pb выдерживался в загрузочной камере в атмосфере кислорода при давлении около 10^{-2} мбар в течение 30 с для формирования И2-слоя на его поверхности. Далее в МЛЭ камере наносился Со2-слой. На последнем этапе все образцы покрывались защитным слоем Si₃N₄. Скорости напыления слоев составляли: 0.5 Å/с для Со-слоев; 12 Å/с для Рb-слоя; 1.8 Å/с для защитного Si₃N₄-слоя.

Толщина АФ-слоя $\text{CoO}_x \ d_{\text{CoO}_x} = 3.5$ нм была выбрана на основе результатов наших предыдущих исследований [30–32]. Такая величина d_{CoO_x} позволяет зафиксировать намагниченность Co1-слоя вдоль направления внешнего магнитного поля до $H_0^{\text{max}} \sim 1.5 \text{ к}$. Толщины Co1 и Co2-слоев одинаковы и составляют 3 нм. Кроме того, нами была приготовлена контрольная серия образцов Co1/Pb/Co2 с такими же толщинами слоев как и у основной серии, но без изолирующих прослоек. Структуры приготовленных образцов представлены на рис. 1.

Экспериментальные результаты. Величины T_c определялись из зависимостей удельного сопротивления от температуры. Сопротивление измерялось при помощи стандартного 4-контактного метода на постоянном токе. Значения T_c определялись как средняя точка на сверхпроводящем переходе.

Вначале образцы охлаждались от комнатной до гелиевых температур во внешнем магнитном поле

Рис. 1. (Цветной онлайн) Структуры приготовленных образцов: (a) – основная серия образцов CoO_x/Co1/ И1/Pb/И2/Co2/Si₃N₄ с изолирующими прослойками; (b) – контрольная серия образцов CoO_x/Co1/Pb/Co2/ Si₃N₄ без изолирующих прослоек

порядка 5 кЭ, приложенном вдоль плоскости образца (field cooling procedure). Это позволяло добиться параллельной ориентации намагниченностей Фслоев и зафиксировать намагниченность Co1-слоя вдоль направления приложенного поля до $H_0^{\text{max}} \sim$ $\sim 1.5 \text{ к}$ Э. Далее была исследована температурная зависимость удельного сопротивления R(T) для П- и АП-ориентаций намагниченностей Ф-слоев для обеих серий образцов. Взаимное изменение ориентации намагниченностей Ф-слоев достигалась путем вращения вектора приложенного внешнего магнитного поля $H_0 = 1 \text{ к}$ Э, приводящего к соответствующему повороту намагниченности Co2-слоя.

На рисунке 2 показаны кривые сверхпроводящих переходов для образцов $\text{CoO}_x(3.5 \text{ нм})/\text{Co1}(3 \text{ нм})/\text{И1}/\text{Pb}(d_{\text{Pb}})/\text{И2}/\text{Co2}(3 \text{ нм})$ с толщинами С-слоя $d_{\text{Pb}} = 120, 60$ и 40 нм при П ($H_0 = +1 \text{ кЭ}$) и АП ($H_0 = -1 \text{ кЭ}$) ориентациях намагниченностей Co1- и Co2-слоев, соответственно. Очевидно, что для образца с $d_{\text{Pb}} = 60$ нм реализован полный эффект ССК ($\Delta T_c > \delta T_c$) со значением $\Delta T_c = 0.2 \text{ K}$ (см. рис. 2b).

На рисунке 3 представлена зависимость ΔT_c от толщины Pb-слоя $d_{\rm Pb}$ для основной серии образцов с изолирующими прослойками. ΔT_c практически линейно увеличивается с уменьшением $d_{\rm Pb}$ до значений 60 нм, после чего ΔT_c начинает резко уменьшаться. Максимальная величина эффекта ССК $\Delta T_c = 0.2$ К достигается при оптимальной толщине сверхпроводящего слоя $d_{\rm Pb} = 60$ нм.

Следует отметить, что для всех образцов контрольной серии с такими же толщинами слоев, как

Рис. 2. (Цветной онлайн) Кривые сверхпроводящих переходов для образцов $\text{CoO}_x(3.5 \text{ нм})/\text{Co1}(3 \text{ нм})/\text{И1}/\text{Pb}(d_{\text{Pb}})/\text{И2}/\text{Co2}(3 \text{ нм})$ с толщинами С слоя $d_{\text{Pb}} = 120 \text{ нм}$ (a), 60 нм (b) и 40 нм (c) при П ($H_0 = +1 \text{ кЭ}$) и АП ($H_0 = -1 \text{ кЭ}$) ориентациях намагниченностей Co1-и Co2-слоев, соответственно

и в основной серии, но без изолирующих прослоек, сверхпроводимость не наблюдалась вплоть до самой низкой достижимой нами температуры 1.4 К.

Обсуждение результатов. Наши результаты демонстрируют значительную величину эффекта ССК в гетероструктурах $\Phi 1/C/\Phi 2$ с изолирующими прослойками на границах раздела $\Phi 1/C$ и С/Ф2 и таким образом подтверждают первоначальные результаты Дойчера и Менье [27]. Более того, выясняется, что толщина С- слоя является важным параметром для реализации полного эффекта ССК. Если сверхпроводящий слой слишком толстый,

Рис. 3. (Цветной онлайн) Зависимость величины эффекта ССК ΔT_c от толщины Рb-слоя $d_{\rm Pb}$ для основной серии образцов с изолирующими прослойками. Сплошная кривая – теоретическая зависимость $\Delta T_c(d_{\rm Pb})$ (см. пункт "Обсуждение результатов")

то эффект не наблюдается. При уменьшении $d_{\rm Pb}$ значение ΔT_c увеличивается и достигает максимума 0.2 К при $d_{\rm Pb} = 60$ нм (см. рис. 3). Дальнейшее уменьшение $d_{\rm Pb}$ приводит к резкому падению T_c . По-видимому, несмотря на изолирующие прослойки, эффект близости С/Ф становится более выраженным при уменьшении $d_{\rm Pb}$.

Достигнутая нами максимальная величина эффекта ССК ΔT_c вдвое превышает величины эффектов в работах [30-33], где исследовались структуры ССК с элементными металлическими ферромагнитными слоями и идеальными границами раздела С/Ф. Полученный нами результат довольно необычен, поскольку противоречит считающемуся важнейшим условием реализации эффекта близости С/Ф – наличию хорошего металлического контакта между С- и Ф- слоями. Не исключено, что оксидные изолирующие прослойки остаются магнитными, как это предполагалось в работах [27, 29]. Они могут играть двойную роль: (1) ослаблять влияние металлического ферромагнитного слоя на С-слой (в контрольных образцах без изолирующих прослоек сверхпроводимость подавляется полностью); (2) и в то же время сохранять своего рода эффект близости, позволяющий переключаться между нормальным и сверхпроводящим состояниями. Стоит отметить, что в работе Ли и др. [28] было продемонстрировано включение/выключение сверхпроводимости в трехслойной системе EuS/Al/EuS, где EuS являлся ферромагнитным изолятором.

Корректное теоретическое описание полученных результатов представляет собой сложную задачу изза неопределенности параметров интерфейсов структуры ССК. Теория для описания T_c в симметричных структурах $\Phi 1/C/\Phi 2$ с тонкими изолирующими интерфейсами была сформулирована в работе [34]. Применив эту теорию к нашим данным, мы смогли добиться качественного согласия между теорией и экспериментом (см. рис. 3) при использовании следующих параметров системы: длины когерентности в сверхпроводнике $\xi_S = 41$ нм; длины когерентности в Φ -слоях $\xi_F = 12$ нм; параметров интерфейсов $\gamma = 0.093$ (параметр согласования материалов) и $\gamma^b = 0.48$ (параметр прозрачности границы) [34] и обменной энергии в Φ -слоях h = 0.035 эВ.

Теория демонстрирует немонотонную зависимость и приблизительное положение максимума величины эффекта ССК. Этот максимум ожилаем. поскольку эффект ССК должен подавляться как в пределе очень тонкого, так и очень толстого С-слоя. Максимальная же величина эффекта ССК должна наблюдаться при толщине С-слоя, близкой к длине когерентности ξ_S . Однако, количественного согласия между теорией и экспериментом добиться не удалось по следующим возможным причинам. Теория [34] предполагает симметричную структуру $\Phi 1/C/\Phi 2$, наши же образцы могут быть асимметричны с точки зрения прозрачности интерфейсов, поскольку условия формирования И1- и И2-слоев были различными. Кроме того, как отмечено выше, не исключен собственный магнетизм интерфейсов, в то время как в теории [34] они моделируются как немагнитные потенциальные барьеры. Тем не менее, несмотря на эти причины, очевидно препятствующие хорошему количественному совпадению теории и эксперимента, примененный нами теоретический подход позволил качественно понять причину немонотонной зависимости $\Delta T_c(d_{\rm Pb})$ в исследованных гетероструктурах и определить условия достижения максимального эффекта ССК.

Заключение. Исследовались сверхпроводящие свойства гетероструктур ССК Co1/Pb/Co2 с тонкими оксидными изолирующими прослойками, сформированными на границах раздела Co1/Pb и Pb/Co2. Была определена оптимальная толщина сверхпроводящего Pb-слоя для реализации полного эффекта сверхпроводящего спинового клапана. Максимальная величина эффекта ССК составила 0.2 К. Наши результаты подтверждают наблюдения работы Дойчера и Менье [27], в которой был обнаружен большой эффект CCK для структур $\Phi 1/C/\Phi 2$ с изолирующими прослойками. Следует отметить, что полученная нами величина эффекта ССК ΔT_c значительно превышает величины эффектов, которые наблюдались для структур с элементными ферромагнитными и сверхпроводящими материалами, где особое внимание уделялось качеству интерфейса ${\rm C}/\Phi.$

Необходимо отметить, что, по всей видимости, в эффекте сверхпроводящего спинового клапана ключевую роль играет не сила эффекта близости С/Ф, а чувствительность сверхпроводимости к магнитной части системы. В наших экспериментах мы старались добиться "ослабленной" сверхпроводимости, максимально чувствительной к изменению взаимной ориентации намагниченностей Фслоев. В структурах Co1/Pb/Co2 без изолирующих прослоек сверхпроводимость полностью подавлена. Роль изолирующих прослоек, возможно, заключается в восстановлении сверхпроводимости в системе путем ухудшения эффекта близости С/Ф. Такая "восстановленная" сверхпроводимость, действительно, оказывается очень чувствительной к магнитной части структуры. Полученные результаты позволяют надеяться, что исследования структур ССК с модифицированными интерфейсами окажут стимулирующее влияние на развитие новых подходов к оптимизации рабочих и конструкционных параметров сверхпроводящих спиновых клапанов.

Финансировнаие работы. Работа А. А. Камашева и Н. Н. Гарифьянова по приготовлению образцов была финансирована Российским научным фондом из проекта #21-72-20153. Работа А. А. Камашева, Н. Н. Гарифьянова, А. А. Валидова и И. А. Гарифуллина по исследованию сверхпроводящих свойств систем была выполнена в рамках государственного задания Федерального исследовательского центра Казанского научного центра Российской академии наук. Работа Я. В. Фоминова была выполнена в рамках государственного задания Института теоретической физики им. Л. Д. Ландау Российской академии наук.

Конфликт интересов. Авторы заявляют, что у них нет конфликта интересов.

- S. Oh, D. Youm, and M.R. Beasley, Appl. Phys. Lett. 71, 2376 (1997).
- 2. L. R. Tagirov, Phys. Rev. Lett. 83, 2058 (1999).
- A.I. Buzdin, A.V. Vedyayev, and N.V. Ryzhanova, Europhys. Lett. 48, 686 (1999).
- J. Y. Gu, C. Y. You, J. S. Jiang, J. Pearson, Ya. B. Bazaliy, and S. D. Bader, Phys. Rev. Lett. 89, 267001 (2002).
- I. C. Moraru, W. P. Pratt, and N. O. Birge, Phys. Rev. Lett. 96, 037004 (2006).
- A. Potenza and C. H. Marrows, Phys. Rev. B 71, 180503(R) (2005).

- K. Westerholt, D. Sprungmann, H. Zabel, R. Brucas, B. Hjörvarsson, D.A. Tikhonov, and I.A. Garifullin, Phys. Rev. Lett. 95, 097003 (2005).
- R. Steiner and P. Ziemann, Phys. Rev. B 74, 094504 (2006).
- N.G. Pugach, M.Yu. Kupriyanov, A.V. Vedyayev, C. Lacroix, E. Goldobin, D. Koelle, R. Kleiner, and A.S. Sidorenko, Phys. Rev. B 80, 134516 (2009).
- P.V. Leksin, N.N. Garif'yanov, I.A. Garifullin, J. Schumann, H. Vinzelberg, V. Kataev, R. Klingeler, O.G. Schmidt, and B. Büchner, Appl. Phys. Lett. 97, 102505 (2010).
- 11. L.B. Ioffe, V.B. Geshkenbein, M.V. Feigel'man, A.L. Fauchère, and G. Blatter, Nature **398**, 679 (1999).
- 12. M. V. Feigel'man, Phys.-Uspekhi 42, 823 (1999).
- 13. A.I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
- F.S. Bergeret, A.F. Volkov, and K.B. Efetov, Rev. Mod. Phys. 77, 1321 (2005).
- M.G. Blamire and J.W.A. Robinson, J. Phys.: Condens. Matter 26, 453201 (2014).
- J. Linder and J. W. A. Robinson, Nat. Phys. 11, 307 (2015).
- 17. M. Eschrig, Rep. Prog. Phys. 78, 104501 (2015).
- E. A. Demler, G. B. Arnold, and M. R. Beasley, Phys. Rev. B 55, 15174 (1997).
- 19. I.A. Garifullin, J. Magn. Magn. Mater. 240, 571 (2002).
- I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).
- J. Linder, T. Yokoyama, and A. Sudbø, Phys. Rev. B 79, 224504 (2009).
- K. B. Efetov, I. A. Garifullin, A. F. Volkov, and K. Westerholt, Spin-Polarized Electrons in the superconductor/ferromagnet hybrid structures: Magnetic Nanostructures. Spin Dynamic and Spin Transport, Springer-Verlag, Berlin, Heidelberg (2013).
- Y. Gu, G.B. Halász, J.W.A. Robinson, and M.G. Blamire, Phys. Rev. Lett. 115, 067201 (2015).
- A. Singh, S. Voltan, K. Lahabi, J. Aarts, Phys. Rev. X 5, 021019 (2015).
- A. A. Kamashev, N. N. Garif'yanov, A. A. Validov, J. Schumann, V. Kataev, B. Büchner, Ya. V. Fominov, and I. A. Garifullin, Phys. Rev. B 100, 134511 (2019).
- P. V. Leksin, A. A. Kamashev, J. Schumann, V. E. Kataev, J. Thomas, B. Büchner, and I. A. Garifullin, Nano Res. 9, 1005 (2016).
- G. Deutscher and F. Meunier, Phys. Rev. Lett. 22, 395 (1999).
- B. Li, N. Roschewsky, B. A. Assaf, M. Eich, M. Epstein-Martin, D. Heiman, M. Münzenberg, and J. S. Moodera, Phys. Rev. Lett. **110**, 097001 (2013).
- J. M. Lommel and C. D. Graham, Jr., J. Appl. Phys. 33, 1160 (1968).

- P.V. Leksin, N.N. Garif'yanov, A.A. Kamashev, Ya.V. Fominov, J. Schumann, C. Hess, V. Kataev, B. Büchner, and I.A. Garifullin, Phys. Rev. B 91, 214508 (2015).
- I.A. Garifullin, P.V. Leksin, N.N. Garif'yanov, A.A. Kamashev, Ya.V. Fominov, J. Schumann, Y. Krupskaya, V. Kataev, O.G. Schmidt, and B. Büchner, J. Magn. Magn. Mater. **373**, 18 (2015).
- 32. A. A. Kamashev, P. V. Leksin, N. N. Garif'yanov, A. A. Validov, J. Schumann, V. Kataev, B. Büchner, and I. A. Garifullin, J. Magn. Magn. Mater. 459, 7 (2018).
- 33. P. V. Leksin, N. N. Garif'yanov, I. A. Garifullin, Ya. V. Fominov, J. Schumann, Y. Krupskaya, V. Kataev, O. G. Schmidt, and B. Büchner, Phys. Rev. Lett. 109, 057005 (2012).
- 34. Ya. V. Fominov, A. A. Golubov, and M. Yu. Kupriyanov, JETP Lett. 77, 510 (2003).