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Fermionic quartet and vestigial gravity
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Experiments on superfluid 3He-B demonstrated the

anomalous behaviour, which suggested the existence of a

new state above the superfluid transition but below the

normal state [1]. The possible interpretation was that

when the disorder suppresses the anisotropic Cooper

pairing, the 4-fermion state with reduced anisotropy is

formed. Such intertwined states are called the vestigial

order, see review paper [2].

There can be many different realizations of the

fermionic quartets, see, e.g., Eqs. (10.2)–(10.7) in [3] and

Eqs. (1) and (2) in [4]. These states have different types

of the topological objects. For example, if the inter-

twined state has the form <ΨΨΨΨ>, the mass of the

effective boson is 4m, which gives rise to the fractional

vortices with circulation quantum 2π~/4m.

An interesting example of the quartet states is the

combination of the S = 1 pairing in the s-wave channel

and the S = 0 pairing in the p-wave channel, both being

forbidden separately [5]. One may also expect the quar-

tet order parameter, which combines the p-wave pair-

ing with ferromagnetism, while both the Cooper pair-

ing and ferromagnetism are absent. The four-fermion

condensate naturally appears in the core of vortices [6].

More on the 4e condensates can be found in [7–17]. The

sextuplets of fermions in the 2 + 1 systems give the frac-

tional values (1/3 or 1/6) of the intrinsic Quantum Hall

Effect [18].

We consider the vestigial order on example of the

spin-triplet p-wave superfluid phases of liquid 3He,

where the order parameter is the complex 3 × 3 ma-

trix Aαi (α is the spin vector index, and i is the or-

bital vector index). Aαi breaks the symmetry G =

= U(1)×SO(3)L×SO(3)S of the normal liquid, where

S and L denote the spin and orbital rotations (we ig-

nore the discrete symmetries). For the polar phase the

order parameter is Aαi ∝ eiΦdαmi, where d is the unit
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vector in the spin space; and m is the unit vector in the

orbital space.

The many-component order parameter is the typi-

cal source of the intertwined states. It is not excluded

that there can be different intertwined vestigial states,

which separate the polar phase from the normal state.

Example is the state in which the pair order param-

eter is absent, <Aαi> = 0, but the 4-fermionic order

parameter is the same as in the nematic liquid crys-

tals, <AαiA
∗
βi + AβiA

∗
αi> ∝ dαdβ . The role of the

director is played by the vector d in the spin space.

This quartet represents the non-superfluid spin nematic,

where the symmetry, which is broken in the polar

phase, is partially restored. The polar phase symmetry

SO(2)L×SO(2)S is enlarged to U(1)×SO(3)L×SO(2)S .

So there is the following sequence of symmetry breaking

transitions starting with the normal state:

G = U(1)× SO(3)L × SO(3)S → (1)

→ Hnematic = U(1)× SO(3)L × SO(2)S → (2)

→ Hpolar = SO(2)L × SO(2)S . (3)

The symmetry breaking scenarios determine the be-

haviour of the topological defects in transition from the

Cooper pairs to quartets. Example is the monopole in

the planar phase of superfluid 3He and in its 4-fermion

partners. The monopole is the combined object: it is

the monopole in spin space, which is accompanied by

the monopole in the orbital vector [19]. If one tries to

split the two monopoles, there appears the analog of

the Nambu string which connects the spin and orbital

monopoles [20]. In the 4-fermion phases the symmetry

is partially restored, the orbital vector is absent, and

the combined monopole in the planar phase transforms

to the isolated monopole in the spin nematics vector.

In the two-step transitions one may expect the ap-

pearance of the hybrid defects, composed of two differ-

ent types of topological defects with different dimen-

sions. Such combined objects are described by the rela-
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tive homotopy groups [21]. These include walls bounded

by strings and strings terminated by monopoles [22–25].

In superfluid 3He-B, the order parameter Aαi plays

the role of gravitational triads [26, 27]. This is the ana-

log of the Akama–Diakonov–Wetterich (ADW) gravity

[28–31], where tetrads are formed as the bilinear com-

binations of fermionic operators (see also [32]):

eaµ = <Êa
µ> , Êa

µ =
1

2

(

Ψ†γa∂µΨ−Ψ†←−∂µγ
aΨ

)

. (4)

The emergent quantum gravity here is of the type of

Einstein–Cartan–Sciama–Kibble (ECSK) tetrad grav-

ity, see review in [33]. The metric, which is the bilinear

combination of tetrads, represents the fermionic quar-

tet.

The analogy with the quartet phases in superfluid
3He suggests that the ADW scenario can be extended

to incorporate the vestigial states of quantum gravity,

where the bilinear order parameter (tetrad) vanishes,

while the quartet order parameter (metric) is nonzero:

<Êa
µ> = 0 , gµν = ηab<Êa

µÊ
b
ν> . (5)

The vestigial order in Eq. (5) describes the emergence of

the Einstein general relativity in terms of metric fields

gµν . So, this symmetry breaking gives rise to the gravity

for bosons, although it emerges in the fermionic vacuum.

The further spontaneous symmetry breaking is the

breaking of the spin rotation symmetry by the tetrad or-

der parameter eaµ in Eq. (4). This gives rise to the Weyl–

Dirac action for fermions and to the Einstein–Cartan–

Sciama–Kibble (ECSK) tetrad gravity, which interacts

also with fermions. The sequence of symmetry breaking

phase transitions is: disorder → GR → ECSK.

Due to the quartic correlators, the ECSK gravity

may have the memory on the vestigial gravity:

gµν = ηabe
a
µe

b
ν + g̃µν , (6)

g̃µν = ηab(<Êa
µÊ

b
ν>−<Êa

µ><Êb
ν>) . (7)

Fermions interact with tetradic part of the metric, while

bosons interact with the full metric. Thus the Equiva-

lence Principle can be violated on the level of particles,

i.e. a boson and a fermion in a given gravitational field

do not follow the same trajectories.
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