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Metallic phases of layered quasi-one-dimensional
(Q1D) organic materials are very unusual and demon-
strate two original types of angular magnetic oscilla-
tions: the so-called Lebed’s magic angles (LMA) [1] and
the Lee–Naughton–Lebed’s (LNL) oscillations [1–8]. As
to the LMA effects, they still contain lots of unexplained
features, whereas the LNL oscillations are well explained
by present moment [6, 9–15]. More recently Kobayashi
et al. in the pioneering work [16] have considered effects
of moderately strong electric fields on the LNL phe-
nomenon and, in particular, have experimentally shown
that the strong electric field splits the LNL maxima of
conductivity. The goal of our paper is to show that the
hypothetical formula of [16] can be obtained by using
some moderately high electric field approximation for
quasi-classical extension of the Boltzmann kinetic equa-
tion.

Let us consider the following Q1D Fermi surface in
a layered conductor in a tight-binding model:

ǫ(p) = ±vF (px ∓ pF ) + 2tb cos(pyb
∗) + 2t⊥ cos(pzd⊥),

vF pF ≫ tb ≫ t⊥. (1)

Under the condition of the LNL experiment the Q1D
conductor is placed in the inclined magnetic field,

H = H (sin θ cosφ, sin θ sinφ, cos θ), (2)

whereas the constant electric field is applied perpendic-
ular to the conducting layers,

E = E (0, 0, 1). (3)

In the so-called τ -approximation, the Boltzmann ki-
netic equation can be written as [10]:

{

eE+

(

e

c

)

[v(p)×H]

}

dn(p)

dp
= −

n(p)− n0(p)

τ
. (4)
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Using the standard approach, we can now represent the
quasi-classical Boltzmann kinetic equation (4) in the fol-
lowing form:

eEv(p)

[

dn0(ǫ)

dǫ
−

d2n0(ǫ)

dǫ2
Ψ(p)

]

−

−

{

eE+

(

e

c

)

[v(p) ×H]

}

dn0(ǫ)

dǫ

dΨ(p)

dp
=

=
dn0(ǫ)

dǫ

Ψ(p)

τ
. (5)

Note that the Boltzmann kinetic equation is usually
studied in metals in small electric fields, whereas the
magnetic fields can be strong. Therefore, there is usually
considered a variant of the equation, which is linear with
respect to the electric field. Since Ψ(p) and dΨ(p)/dp
are both proportional to electric field, the following two
terms

−eEv(p)
d2n0(ǫ)

dǫ2
Ψ(p)− eE

dn0(ǫ)

dǫ

dΨ(p)

dp
(6)

are usually omitted in the Boltzmann equation (5) (see,
for example, [9, 10]). In this article, for the first time
we theoretically consider the case of moderately strong
electric fields, where we disregard the first term but keep
the second one of the above mentioned two terms (6).
It is easy to see that we can disregard the first term in
Eq. (6), if it much less than the right side of Eq. (5):
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. (7)

Since

|v(p)| = |−2t⊥d⊥ sin(pzd⊥)| ∼ t⊥d⊥ (8)

and
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, (9)

Equation (7) can be rewritten as

eE(t⊥d⊥)τ ≪ T. (10)
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The physical meaning of Eqs. (7)–(10) is now clear. Elec-
tric field has to be small enough in order not to change
electron energy on the scale of the temperature. As a re-
sult of disregarding the above discussed term in Eq. (5),
instead of Eq. (5), we obtain

eEv(p)−

{

eE+

(

e

c

)

[v(p)×H]

}

dΨ(p)

dp
=

Ψ(p)

τ
. (11)

It is important that Eq. (11) is different from the weak
electric field approximation equations considered in
[9, 10] and, thus, we call the former equation the quasi-
classical kinetic equation for moderately strong electric
fields.

Straightforward calculations [10] result in the follow-
ing expression for the total conductivity:

σzz(θ, φ, E,H) =
σzz(0)

2

+∞
∑

n=−∞

J2
n

[

ω∗
c (θ, φ)

ωb(θ)

]

×

{

1

1 + [ωc(θ, φ) + ωE − nωb(θ)]2τ2

+
1

1 + [ωc(θ, φ)− ωE − nωb(θ)]2τ2

}

. (12)

Note that Eq. (12) describes splitting of the LNL max-
ima of conductivity for the LNL oscillations (see Fig. 2
of [16]). Indeed, in pure layered Q1D metals it has two
maxima at

ωc(θ, φ) = nωb(θ) ± ωE (13)

or

tan(θ±) sin(φ) = n

(

b∗

d⊥

)

±
Ec

vFH cos(θ)
, (14)

where n is an integer. We note that, using Eq. (14) and
experimental data on splitting the LNL maxima, the
authors of work [16] evaluated the Fermi velocity vF
(1) in compound α-(BEDT-TTF)2KHg(SCN)4, corre-
sponding to open sheets of the Fermi surface, vF ≃
≃ 107cm/s. We suggest to use the above described effect
to determine Fermi velocities in other Q1D conductors,
where heating of a sample under experiment allows to
observe such splitting and where inequality (10) is ful-
filled.

To summarize we stress that the derived above in
moderately high electric fields (i.e., when inequality (10)
is fulfilled). Eq. (12) was guessed in [16] as a strict equa-
tion, which is not correct. Although Eq. (12) coincides
with Eq. (4) from [16], we have to check if inequality
(10) is true under the experimental conditions of [16].
Indeed, the experimental conditions were the following:
voltage V = 2−20V, thickness of the sample d = 0.1
mm, temperature T = 1.8K [16]. If we take into account

the following band structure parameters of α-(BEDT-
TTF)2KHg(SCN)4 organic material [16]: d⊥ = 20 Å [1]
and t⊥ ≃ 30µeV [1], then at V = 2V, Eq. (10) can be
written as

eE(t⊥d⊥)τ ≃ 0.14 K ≪ T = 1.8 K, (15)

whereas at V = 20V both sides of Eq. (10) become
of the same order. So, although the overall compari-
son of the experimental results [16] with the theoretical
Eq. (12) can be justified at small voltages, at high volt-
ages this has to be done with some caution.
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